Impact of mixing insufficiencies on L-phenylalanine production with an Escherichia coli reporter strain in a novel two-compartment bioreactor

Author:

Hoang Manh Dat,Polte Ingmar,Frantzmann Lukas,von den Eichen Nikolas,Heins Anna-Lena,Weuster-Botz Dirk

Abstract

Abstract Background The omnipresence of population heterogeneity in industrial bioprocesses originates from prevailing dynamic bioprocess conditions, which promote differences in the expression of cellular characteristics. Despite the awareness, the concrete consequences of this phenomenon remain poorly understood. Results Therefore, for the first time, a L-phenylalanine overproducing Escherichia coli quadruple reporter strain was established for monitoring of general stress response, growth behavior, oxygen limitation and product formation of single cells based on mTagBFP2, mEmerald, CyOFP1, and mCardinal2 expression measured by flow cytometry. This strain was applied for the fed-batch production of L-phenylalanine from glycerol and ammonia in a stirred-tank bioreactor at homogeneous conditions compared to the same process in a novel two-compartment bioreactor. This two-compartment bioreactor consists of a stirred-tank bioreactor with an initial volume of 0.9 L (homogeneous zone) with a coiled flow inverter with a fixed working volume of 0.45 L as a bypass (limitation zone) operated at a mean hydraulic residence time of 102 s. The product formation was similar in both bioreactor setups with maximum L-phenylalanine concentrations of 21.1 ± 0.6 g L−1 demonstrating the consistency of this study’s microbial L-phenylalanine production. However, cell growth was vulnerable to repetitive exposure to the dynamically changing conditions in the two-compartment bioreactor with maximum biomass yields reduced by 21%. The functionality of reporter molecules was approved in the stirred-tank bioreactor cultivation, in which expressed fluorescence levels of all four markers were in accordance with respective process state variables. Additional evaluation of the distributions on single-cell level revealed the presence of population heterogeneity in both bioprocesses. Especially for the marker of the general stress response and the product formation, the corresponding histograms were characterized by bimodal shapes and broad distributions. These phenomena were pronounced particularly at the beginning and the end of the fed-batch process. Conclusions The here shown findings confirm multiple reporter strains to be a noninvasive tool for monitoring cellular characteristics and identifying potential subpopulations in bioprocesses. In combination with experiments in scale-down setups, these can be utilized for a better physiological understanding of bioprocesses and support future scale-up procedures.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3