A novel knock out strategy to enhance recombinant protein expression in Escherichia coli

Author:

Sharma Ashish K.,Shukla Esha,Janoti Deepak S.,Mukherjee Krishna J.,Shiloach JosephORCID

Abstract

Abstract Background The expression of recombinant proteins triggers a stress response which downregulates key metabolic pathway genes leading to a decline in cellular health and feedback inhibition of both growth and protein expression. Instead of individually upregulating these downregulated genes or improving transcription rates by better vector design, an innovative strategy would be to block this stress response thereby ensuring a sustained level of protein expression. Results We postulated that the genes which are commonly up-regulated post induction may play the role of signalling messengers in mounting the cellular stress response. We identified those genes which have no known downstream regulatees and created knock outs which were then tested for GFP expression. Many of these knock outs showed significantly higher expression levels which was also sustained for longer periods. The highest product yield (Yp/x) was observed in a BW25113ΔcysJ knock out (Yp/x 0.57) and BW25113ΔelaA (Yp/x 0.49), whereas the Yp/x of the control W3110 strain was 0.08 and BW25113 was 0.16. Double knock out combinations were then created from the ten best performing single knock outs leading to a further enhancement in expression levels. Out of 45 double knock outs created, BW25113ΔelaAΔyhbC (Yp/x 0.7) and BW25113ΔcysJΔyhbC (Yp/x 0.64) showed the highest increase in product yield compared to the single gene mutant strains. We confirmed the improved performance of these knock outs by testing and obtaining higher levels of recombinant asparaginase expression, a system better suited for analysing sustained expression since it gets exported to the extracellular medium. Conclusion Creating key knock outs to block the CSR and enhance expression is a radically different strategy that can be synergistically combined with traditional methods of improving protein yields thus helping in the design of superior host platforms for protein expression.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3