Abstract
Abstract
Background
A new Bacillus thuringiensis X023 (BtX023) with high insecticidal activity was isolated in Hunan Province, China. The addition of metals (Cu, Fe, Mg and Mn) to the medium could influence the formation of spores and/or insecticidal crystal proteins (ICPs). In previous studies, Cu ions considerably increased the synthesis of ICPs by enhancing the synthesis of poly-β-hydroxy butyrate. However, the present study could provide new insights into the function of Cu ions in ICPs.
Results
Bioassay results showed that wild strain BtX023 exhibited high insecticidal activity against Plutella xylostella. The addition of 1 × 10−5 M Cu2+ could considerably increase the expression of cry1Ac and vip3Aa, and the insecticidal activity was enhanced. Quantitative real-time polymerase chain reaction (qRT-PCR) and proteomic analyses revealed that the upregulated proteins included amino acid synthesis, the glyoxylate pathway, oxidative phosphorylation, and poly-β-hydroxy butyrate synthesis. The Cu ions enhanced energy metabolism and primary amino acid synthesis, will providing abundant raw material accumulation for ICP synthesis.
Conclusion
The new strain BtX023 exerted a strong insecticidal effect on P. xylostella by producing ICPs. The addition of 1 × 10−5 M Cu2+ in the medium could considerably enhance the expression of the cry1Ac and vip3Aa genes, thereby further increasing the toxicity of BtX023 to Helicoverpa armigera and P. xylostella by enhancing energy synthesis, the glyoxylate cycle, and branched-chain amino acids synthesis, but not poly-β-hydroxy butyrate synthesis.
Funder
National key Research and Development program of China
National Natural Science Foundation of China
Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference30 articles.
1. Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol. 1997;63:532–6.
2. Höfte H, Whiteley H. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989;53:242–55.
3. Romeis J, Meissle M, Bigler F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol. 2006;24:63.
4. Roh JY, Choi JY, Li MS, Jin BR, Je YH. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol. 2007;17:547.
5. Jouzani GS, Valijanian E, Sharafi R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol. 2017;101:2691–711.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献