Enhancing the insecticidal activity of new Bacillus thuringiensis X023 by copper ions

Author:

Liu Zhuolin,Xie Junyan,Deng Ziru,Wang Mulan,Dang Dandan,Luo Sha,Wang Yunfeng,Sun Yunjun,Xia Liqiu,Ding XuezhiORCID

Abstract

Abstract Background A new Bacillus thuringiensis X023 (BtX023) with high insecticidal activity was isolated in Hunan Province, China. The addition of metals (Cu, Fe, Mg and Mn) to the medium could influence the formation of spores and/or insecticidal crystal proteins (ICPs). In previous studies, Cu ions considerably increased the synthesis of ICPs by enhancing the synthesis of poly-β-hydroxy butyrate. However, the present study could provide new insights into the function of Cu ions in ICPs. Results Bioassay results showed that wild strain BtX023 exhibited high insecticidal activity against Plutella xylostella. The addition of 1 × 10−5 M Cu2+ could considerably increase the expression of cry1Ac and vip3Aa, and the insecticidal activity was enhanced. Quantitative real-time polymerase chain reaction (qRT-PCR) and proteomic analyses revealed that the upregulated proteins included amino acid synthesis, the glyoxylate pathway, oxidative phosphorylation, and poly-β-hydroxy butyrate synthesis. The Cu ions enhanced energy metabolism and primary amino acid synthesis, will providing abundant raw material accumulation for ICP synthesis. Conclusion The new strain BtX023 exerted a strong insecticidal effect on P. xylostella by producing ICPs. The addition of 1 × 10−5 M Cu2+ in the medium could considerably enhance the expression of the cry1Ac and vip3Aa genes, thereby further increasing the toxicity of BtX023 to Helicoverpa armigera and P. xylostella by enhancing energy synthesis, the glyoxylate cycle, and branched-chain amino acids synthesis, but not poly-β-hydroxy butyrate synthesis.

Funder

National key Research and Development program of China

National Natural Science Foundation of China

Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3