Author:
Xu Rui,Li Xin Ping,Zhang Xiang,Shen Wen Hao,Min Chun Yan,Wang Jian Wen
Abstract
Abstract
Background
Fungal perylenequinones (PQs) are a class of photoactivated polyketide mycotoxins produced by plant-associated fungi. Hypocrellins, the effective anticancer photodynamic therapy (PDT) agents are main bioactive PQs isolated from a bambusicolous Shiraia fruiting bodies. We found previously that bacterial communities inhabiting fungal fruiting bodies are diverse, but with unknown functions. Bacillus is the most dominant genus inside Shiraia fruiting body. To understand the regulation role of the dominant Bacillus isolates on host fungus, we continued our work on co-culture of the dominant bacterium B. cereus No.1 with host fungus Shiraia sp. S9 to elucidate bacterial regulation on fungal hypocrellin production.
Results
Results from "donut" plate tests indicated that the bacterial culture could promote significantly fungal PQ production including hypocrellin A (HA), HC and elsinochrome A-C through bacterial volatiles. After analysis by gas chromatograph/mass spectrometer and confirmation with commercial pure compounds, the volatiles produced by the bacterium were characterized. The eliciting roles of bacterial volatile organic compounds (VOCs) on HA production via transcriptional regulation of host Shiraia fungus were confirmed. In the established submerged bacterial volatile co-culture, bacterial volatiles could not only promote HA production in the mycelium culture, but also facilitate the release of HA into the medium. The total production of HA was reached to 225.9 mg/L, about 1.87 times that of the fungal mono-culture. In contrast, the live bacterium suppressed markedly fungal PQ production in both confrontation plates and mycelium cultures by direct contact. The live bacterium not only down-regulated the transcript levels of HA biosynthetic genes, but also degraded extracellular HA quickly to its reductive product.
Conclusion
Our results indicated that bacterial volatile release could be a long-distance signal to elicit fungal PQ production. Biodegradation and inhibition by direct contact on fungal PQs were induced by the dominate Bacillus to protect themselves in the fruiting bodies. This is the first report on the regulation of Bacillus volatiles on fungal PQ production. These findings could be helpful for both understanding the intimate fungal–bacterial interactions in a fruiting body and establishing novel cultures for the enhanced production of bioactive PQs.
Graphical Abstract
Funder
National Natural Science Foundation of China
Priority Academic Program Development of the Jiangsu Higher Education Institutes
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference46 articles.
1. Cheng TF, Jia XM, Ma XH, Lin HP, Zhao YH. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses. J Basic Microbiol. 2004;44:339–50.
2. Zhong JJ, Xiao JH. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol. 2009;113:79–150.
3. Khiralla A, Mohammed AO, Yagi S. Fungal perylenequinones. Mycol Prog. 2022;21:38.
4. Zhang J, Cao EH, Li JF, Zhang TC, Ma WJ. Photodynamic effects of hypocrellin A on three human malignant cell lines by inducing apoptotic cell death. J Photochem Photobiol B. 1998;43:106–11.
5. Hirayama J, Ikebuchi K, Abe H, Kwon KW, Ohnishi Y, Horiuchi M, Shinagawa M, Ikuta K, Kamo N, Sekiguchi S. Photoinactivation of virus infectivity by hypocrellin A. Photochem Photobiol. 1997;66:697–700.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献