Purification and characterization of crude fructooligosaccharides extracted from red onion (Allium cepa var. viviparum) by yeast treatment

Author:

Aisara Jakkrit,Wongsanittayarak Jirat,Leangnim Nalapat,Utama Kraikrit,Sangthong Padchanee,Sriyotai Woraprapa,Mahatheeranont Sugunya,Phongthai Suphat,Unban Kridsada,Lumyong Saisamorn,Khanongnuch Chartchai,Wongputtisin Pairote,Kanpiengjai Apinun

Abstract

Abstract Background Yeast treatment has been used for purification of fructooligosaccharides (FOSs). However, the main drawback of this approach is that yeast can only partially remove sucrose from crude FOSs. The main objective of this research was to screen yeast strains for the capability of selectively consuming unwanted sugars, namely fructose, glucose, and sucrose, in crude FOSs extracted from red onion (Allium cepa var. viviparum) with minimal effect on FOS content. Results Among 43 yeast species isolated from Miang, ethnic fermented tea leaves, and Assam tea flowers, Candida orthopsilosis FLA44.2 and Priceomyces melissophilus FLA44.8 exhibited the greatest potential to specifically consume these unwanted sugars. In a shake flask, direct cultivation of C. orthopsilosis FLA44.2 was achieved in the original crude FOSs containing an initial FOSs concentration of 88.3 ± 1.2 g/L and 52.9 ± 1.2 g/L of the total contents of fructose, glucose, and sucrose. This was successful with 93.7% purity and 97.8% recovery after 24 h of cultivation. On the other hand, P. melissophilus FLA48 was limited by initial carbohydrate concentration of crude FOSs in terms of growth and sugar utilization. However, it could directly purify two-fold diluted crude FOSs to 95.2% purity with 92.2% recovery after 72 h of cultivation. Purification of crude FOSs in 1-L fermenter gave similar results to the samples purified in a shake flask. Extracellular β-fructosidase was assumed to play a key role in the effective removal of sucrose. Both Candida orthopsilosis FLA44.2 and P. melissophilus FLA44.8 showed γ-hemolytic activity, while their culture broth had no cytotoxic effect on viability of small intestinal epithelial cells, preliminarily indicating their safety for food processing. The culture broth obtained from yeast treatment was passed through an activated charcoal column for decolorization and deodorization. After being freeze dried, the final purified FOSs appeared as a white granular powder similar to refined sugar and was odorless since the main sulfur-containing volatile compounds, including dimethyl disulfide and dipropyl trisulfide, were almost completely removed. Conclusion The present purification process is considered simple and straight forward, and provides new and beneficial insight into utilization of alternative yeast species for purification of FOSs.

Funder

National Research Council of Thailand

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3