Active human full-length CDKL5 produced in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125

Author:

Colarusso Andrea,Lauro Concetta,Calvanese Marzia,Parrilli Ermenegilda,Tutino Maria Luisa

Abstract

Abstract Background A significant fraction of the human proteome is still inaccessible to in vitro studies since the recombinant production of several proteins failed in conventional cell factories. Eukaryotic protein kinases are difficult-to-express in heterologous hosts due to folding issues both related to their catalytic and regulatory domains. Human CDKL5 belongs to this category. It is a serine/threonine protein kinase whose mutations are involved in CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental pathology still lacking a therapeutic intervention. The lack of successful CDKL5 manufacture hampered the exploitation of the otherwise highly promising enzyme replacement therapy. As almost two-thirds of the enzyme sequence is predicted to be intrinsically disordered, the recombinant product is either subjected to a massive proteolytic attack by host-encoded proteases or tends to form aggregates. Therefore, the use of an unconventional expression system can constitute a valid alternative to solve these issues. Results Using a multiparametric approach we managed to optimize the transcription of the CDKL5 gene and the synthesis of the recombinant protein in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 applying a bicistronic expression strategy, whose generalization for recombinant expression in the cold has been here confirmed with the use of a fluorescent reporter. The recombinant protein largely accumulated as a full-length product in the soluble cell lysate. We also demonstrated for the first time that full-length CDKL5 produced in Antarctic bacteria is catalytically active by using two independent assays, making feasible its recovery in native conditions from bacterial lysates as an active product, a result unmet in other bacteria so far. Finally, the setup of an in cellulo kinase assay allowed us to measure the impact of several CDD missense mutations on the kinase activity, providing new information towards a better understanding of CDD pathophysiology. Conclusions Collectively, our data indicate that P. haloplanktis TAC125 can be a valuable platform for both the preparation of soluble active human CDKL5 and the study of structural–functional relationships in wild type and mutant CDKL5 forms. Furthermore, this paper further confirms the more general potentialities of exploitation of Antarctic bacteria to produce “intractable” proteins, especially those containing large intrinsically disordered regions.

Funder

Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3