Abstract
AbstractPlasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality.
Graphical Abstract
Funder
enGenes Biotech GmbH
Baxalta Innovations GmbH, a part of Takeda companies
University of Vienna
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference75 articles.
1. Mairhofer J, Lara AR. Advances in host and vector development for the production of plasmid DNA vaccines, cancer vaccines. Berlin: Springer; 2014. p. 505–41.
2. European Medicines Agency. 2020. Comirnaty assessment report, https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf. Accessed 28 Jul 2022.
3. Schmidt A, Helgers H, Vetter FL, Juckers A, Strube J. Fast and flexible mRNA vaccine manufacturing as a solution to pandemic situations by adopting chemical engineering good practice-continuous autonomous operation in stainless steel equipment concepts. Processes. 2021;9:1874.
4. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagnostic Res JCDR. 2015;9(1):GE01.
5. Cherng J-Y, Schuurmans-Nieuwenbroek N, Jiskoot W, Talsma H, Zuidam N, Hennink W, Crommelin D. Effect of DNA topology on the transfection efficiency of poly ((2-dimethylamino) ethyl methacrylate)-plasmid complexes. J Controll Release. 1999;60:343–53.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献