Efficient and scalable synthesis of 1,5-diamino-2-hydroxy-pentane from l-lysine via cascade catalysis using engineered Escherichia coli

Author:

Li Yangyang,Zhang Alei,Hu Shewei,Chen Kequan,Ouyang Pingkai

Abstract

Abstract Background 1,5-Diamino-2-hydroxy-pentane (2-OH-PDA), as a new type of aliphatic amino alcohol, has potential applications in the pharmaceutical, chemical, and materials industries. Currently, 2-OH-PDA production has only been realized via pure enzyme catalysis from lysine hydroxylation and decarboxylation, which faces great challenges for scale-up production. However, the use of a cell factory is very promising for the production of 2-OH-PDA for industrial applications, but the substrate transport rate, appropriate catalytic environment (pH, temperature, ions) and separation method restrict its efficient synthesis. Here, a strategy was developed to produce 2-OH-PDA via an efficient, green and sustainable biosynthetic method on an industrial scale. Results In this study, an approach was created for efficient 2-OH-PDA production from l-lysine using engineered E. coli BL21 (DE3) cell catalysis by a two-stage hydroxylation and decarboxylation process. In the hydroxylation stage, strain B14 coexpressing l-lysine 3-hydroxylase K3H and the lysine transporter CadB-argT enhanced the biosynthesis of (2S,3S)-3-hydroxylysine (hydroxylysine) compared with strain B1 overexpressing K3H. The titre of hydroxylysine synthesized by B14 was 2.1 times higher than that synthesized by B1. Then, in the decarboxylation stage, CadA showed the highest hydroxylysine activity among the four decarboxylases investigated. Based on the results from three feeding strategies, l-lysine was employed to produce 110.5 g/L hydroxylysine, which was subsequently decarboxylated to generate a 2-OH-PDA titre of 80.5 g/L with 62.6% molar yield in a 5-L fermenter. In addition, 2-OH-PDA with 95.6% purity was obtained by solid-phase extraction. Thus, the proposed two-stage whole-cell biocatalysis approach is a green and effective method for producing 2-OH-PDA on an industrial scale. Conclusions The whole-cell catalytic system showed a sufficiently high capability to convert lysine into 2-OH-PDA. Furthermore, the high titre of 2-OH-PDA is conducive to separation and possesses the prospect of industrial scale production by whole-cell catalysis.

Funder

National Key R&D Program of China

National Science Foundation for Young Scientists of China

Open-end Funds of Jiangsu Key Laboratory of Marine Bioresources and Environment

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3