Calcium-assisted sortase A cleavage of SUMOylated metallothionein constructs leads to high-yield production of human MT3

Author:

Singh Avinash Kumar,Krężel Artur

Abstract

AbstractBackgroundMammalian metallothioneins (MTs) are small (6–7 kDa), intracellular, cysteine-rich, metal-binding proteins involved, inter alia, in the homeostasis of zinc and copper, detoxification of heavy metals, antioxidation against reactive oxygen species, and protection against DNA damage. The high cysteine content (~ 30%) in MTs makes them toxic to bacterial cells during protein production, resulting in low yield. To address this issue, we present for the first time a combinatorial approach using the small ubiquitin-like modifier (SUMO) and/or sortase as fusion tags for high-level expression of human MT3 inE. coliand its purification by three different strategies.ResultsThree different plasmids were generated using SUMO, sortase A pentamutant (eSrtA), and sortase recognition motif (LPETG) as removable fusion tags for high-level expression and purification of human MT3 from the bacterial system. In the first strategy, SUMOylated MT3 was expressed and purified using Ulp1-mediated cleavage. In the second strategy, SUMOylated MT3 with a sortase recognition motif at the N-terminus of MT3 was expressed and purified using sortase-mediated cleavage. In the final strategy, the fusion protein His6-SUMO-eSrtA-LPETG-MT3 was expressed and purified by one-step sortase-mediated inducible on-bead autocleavage. Using these three strategies the apo-MT3 was purified in a yield of 11.5, 11, and 10.8 mg/L, respectively, which is the highest yield achieved for MT expression and purification to date. No effect of MT3 on Ni2+-containing resin was observed.ConclusionThe SUMO/sortase-based strategy used as the production system for MT3 resulted in a very high expression level and protein production yield. The apo-MT3 purified by this strategy contained an additional glycine residue and had similar metal binding properties as WT-MT3. This SUMO-sortase fusion system is a simple, robust, and inexpensive one-step purification approach for various MTs as well as other toxic proteins with very high yield via immobilized metal affinity chromatography (IMAC).

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3