Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose–xylose mixture

Author:

Jilani Syed Bilal,Dev Chandra,Eqbal Danish,Jawed Kamran,Prasad Rajendra,Yazdani Syed ShamsORCID

Abstract

Abstract Background Furfural and 5-hydroxymethyl furfural (5-HMF) are key furan inhibitors that are generated due to breakdown of lignocellulosic sugars at high temperature and acidic treatment conditions. Both furfural and 5-HMF act in a synergistic manner to inhibit microbial metabolism and resistance to both is a desirable characteristic for efficient conversion of lignocellulosic carbon to ethanol. Genetic manipulations targeted toward increasing cellular NADPH pools have successfully imparted tolerance against furfural and 5-HMF. In present study, deletion of pgi gene as a strategy to augment carbon flow through pentose phosphate pathway (PPP) was studied in ethanologenic Escherichia coli strain SSK101 to impart tolerance towards either furfural or 5-HMFor both inhibitors together. Results A key gene of EMP pathway, pgi, was deleted in an ethanologenic E. coli strain SSK42 to yield strain SSK101. In presence of 1 g/L furfural in minimal AM1 media, the rate of biomass formation for strain SSK101 was up to 1.9-fold higher as compared to parent SSK42 strain, and it was able to clear furfural in half the time. Tolerance to inhibitor was associated with glucose as carbon source and not xylose, and the tolerance advantage of SSK101 was neutralized in LB media. Bioreactor studies were performed under binary stress of furfural and 5-HMF (1 g/L each) and different glucose concentrations in a glucose–xylose mixture with final sugar concentration of 5.5%, mimicking major components of dilute acid treated biomass hydrolysate. In the mixture having 6 g/L and 12 g/L glucose, SSK101 strain produced ~ 18 g/L and 20 g/L ethanol, respectively. Interestingly, the maximum ethanol productivity was better at lower glucose load with 0.46 g/(L.h) between 96 and 120 h, as compared to higher glucose load where it was 0.33 g/(L.h) between 144 and 168 h. Importantly, parent strain SSK42 did not exhibit significant metabolic activity under similar conditions of inhibitor load and sugar concentration. Conclusions E. coli strain SSK101 with pgi deletion had enhanced tolerance against both furfural and 5-HMF, which was associated with presence of glucose in media. Strain SSK101 also had improved fermentation characteristics under both hyperosmotic as well as binary stress of furfural and 5-HMF in media containing glucose–xylose mixture.

Funder

Department of Biotechnology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3