Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production

Author:

Xie Hao,Lindblad PeterORCID

Abstract

Abstract Background Cyanobacteria, photosynthetic microorganisms, are promising green cell factories for chemical production, including biofuels. Isobutanol, a four-carbon alcohol, is considered as a superior candidate as a biofuel for its high energy density with suitable chemical and physical characteristics. The unicellular cyanobacterium Synechocystis PCC 6803 has been successfully engineered for photosynthetic isobutanol production from CO2 and solar energy in a direct process. Results Heterologous expression of α-ketoisovalerate decarboxylase (KivdS286T) is sufficient for isobutanol synthesis via the 2-keto acid pathway in Synechocystis. With additional expression of acetolactate synthase (AlsS), acetohydroxy-acid isomeroreductase (IlvC), dihydroxy-acid dehydratase (IlvD), and alcohol dehydrogenase (Slr1192OP), the Synechocystis strain HX42, with a functional 2-keto acid pathway, showed enhanced isobutanol production reaching 98 mg L−1 in short-term screening experiments. Through modulating kivdS286T copy numbers as well as the composition of the 5′-region, a final Synechocystis strain HX47 with three copies of kivdS286T showed a significantly improved isobutanol production of 144 mg L−1, an 177% increase compared to the previously reported best producing strain under identical conditions. Conclusions This work demonstrates the feasibility to express heterologous genes with a combination of self-replicating plasmid-based system and genome-based system in Synechocystis cells. Obtained isobutanol-producing Synechocystis strains form the base for further investigation of continuous, long-term-photosynthetic isobutanol production from solar energy and carbon dioxide. Graphic abstract

Funder

Energimyndigheten

NordForsk

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Reference40 articles.

1. Zhou YJ, Kerkhoven EJ, Nielsen J. Barriers and opportunities in bio-based production of hydrocarbons. Nat Energy. 2018;3(11):925–35.

2. Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86–9.

3. Fu C, Li Z, Jia C, Zhang W, Zhang Y, Yi C, et al. Recent advances on bio-based isobutanol separation. Energy Convers Manage X. 2021;10:100059.

4. Liu X, Xie H, Roussou S, Lindblad P. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production. Curr Opin Biotechnol. 2021;73:143–50.

5. Liu X, Xie H, Roussou S, Miao R, Lindblad P. Engineering cyanobacteria for photosynthetic butanol production. In: Rögner M, editor. Photosynthesis: biotechnological applications with micro-algae. Berlin: Walter de Gruyter GmbH; 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3