Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway

Author:

Song Shikui,He Jianxin,Gao Meng,Huang Yongqi,Cheng XiyaoORCID,Su ZhengdingORCID

Abstract

Abstract4-Androstene-3,17-dione (4-AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (BA) are the most important and representative C19- and C22-steroidal materials. The optimalization of sterol production with mycobacterial phytosterol conversion has been investigated for decades. One of the major challenges is that current industrial mycobacterial strains accumulate unignorable impurities analogous to desired sterol intermediates, significantly hampering product extractions and refinements. Previously, we identified Mycobacterium neoaurum HGMS2 as an efficient 4-AD-producing strain (Wang et al. in Microb Cell Fact. 19:187, 2020). Recently, we have genetically modified the HGMS2 strain to remove its major impurities including ADD and 9OH-AD (Li et al. in Microb Cell Fact. 20:158, 2021). Unexpectedly, the modified mutants started to significantly accumulate BA compared with the HGMS2 strain. In this work, while we attempted to block BA occurrence during 4-AD accumulation in HGMS2 mutants, we identified a few loop pathways that regulated metabolic flux switching between 4-AD and BA accumulations and found that both the 4-AD and BA pathways shared a 9,10-secosteroidial route. One of the key enzymes in the loop pathways was Hsd4A1, which played an important role in determining 4-AD accumulation. The inactivation of the hsd4A1 gene significantly blocked the 4-AD metabolic pathway so that the phytosterol degradation pathway flowed to the BA metabolic pathway, suggesting that the BA metabolic pathway is a complementary pathway to the 4-AD pathway. Thus, knocking out the hsd4A1 gene essentially made the HGMS2 mutant (HGMS2Δhsd4A1) start to efficiently accumulate BA. After further knocking out the endogenous kstd and ksh genes, an HGMS2Δhsd4A1 mutant, HGMS2Δhsd4A1/Δkstd1, enhanced the phytosterol conversion rate to BA in 1.2-fold compared with the HGMS2Δhsd4A1 mutant in pilot-scale fermentation. The final BA yield increased to 38.3 g/L starting with 80 g/L of phytosterols. Furthermore, we knocked in exogenous active kstd or ksh genes to HGMS2Δhsd4A1/Δ kstd1 to construct DBA- and 9OH-BA-producing strains. The resultant DBA- and 9OH-BA-producing strains, HGMS2Δhsd4A1/kstd2 and HGMS2Δkstd1/Δhsd4A1/kshA1B1, efficiently converted phytosterols to DBA- and 9OH-BA with the rates of 42.5% and 40.3%, respectively, and their final yields reached 34.2 and 37.3 g/L, respectively, starting with 80 g/L phytosterols. Overall, our study not only provides efficient strains for the industrial production of BA, DBA and 9OH-BA but also provides insights into the metabolic engineering of the HGMS2 strain to produce other important steroidal compounds.

Funder

Natural Science Foundation of Hubei Province

National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology

The Hubei Provincial Ministry of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3