Strain specific properties of Escherichia coli can prevent non-canonical amino acid misincorporation caused by scale-related process heterogeneities

Author:

Mayer Florian,Cserjan-Puschmann Monika,Haslinger Benedikt,Shpylovyi Anton,Dalik Thomas,Sam Christian,Hahn Rainer,Striedner Gerald

Abstract

Abstract Background Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. Results We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. Conclusions This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.

Funder

Christian Doppler Forschungsgesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3