Optimization of the production process for the anticancer lead compound illudin M: improving titers in shake-flasks

Author:

Chaverra-Muñoz Lillibeth,Briem Theresa,Hüttel Stephan

Abstract

Abstract Background The fungal sesquiterpenes Illudin M and S are important base molecules for the development of new anticancer agents due to their strong activity against some resistant tumor cell lines. Due to nonspecific toxicity of the natural compounds, improvement of the pharmacophore is required. A semisynthetic derivative of illudin S (Irofulven) entered phase II clinical trials for the treatment of castration-resistant metastatic prostate cancer. Several semisynthetic illudin M derivatives showed increased in vitro selectivity and improved therapeutic index against certain tumor cell lines, encouraging further investigation. This requires a sustainable supply of the natural compound, which is produced by Basidiomycota of the genus Omphalotus. We aimed to develop a robust biotechnological process to deliver illudin M in quantities sufficient to support medicinal chemistry studies and future preclinical and clinical development. In this study, we report the initial steps towards this goal. Results After establishing analytical workflows, different culture media and commercially available Omphalotus strains were screened for the production of illudin M.Omphalotus nidiformis cultivated in a medium containing corn steep solids reached ~ 38 mg L−1 setting the starting point for optimization. Improved seed preparation in combination with a simplified medium (glucose 13.5 g L−1; corn steep solids 7.0 g L− 1; Dox broth modified 35 mL), reduced cultivation time and enhanced titers significantly (~ 400 mg L−1). Based on a reproducible cultivation method, a feeding strategy was developed considering potential biosynthetic bottlenecks. Acetate and glucose were fed at 96 h (8.0 g L−1) and 120 h (6.0 g L−1) respectively, which resulted in final illudin M titer of ~ 940 mg L−1 after eight days. This is a 25 fold increase compared to the initial titer. Conclusion After strict standardization of seed-preparation and cultivation parameters, a combination of experimental design, empirical trials and additional supply of limiting biosynthetic precursors, led to a highly reproducible process in shake flasks with high titers of illudin M. These findings are the base for further work towards a scalable biotechnological process for a stable illudin M supply.

Funder

Helmholtz-Zentrum für Infektionsforschung GmbH (HZI)

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Reference59 articles.

1. Qin H, Xu JW, Xiao JH, Tang YJ, Xiao H, Zhong JJ. Cell factories of higher fungi for useful metabolite production. Adv Biochem Eng Biotechnol. 2016;155:199–235.

2. Karwehl S, Stadler M. Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr Top Microbiol Immunol. 2016. https://doi.org/10.1007/82_2016_496.

3. File TM Jr, Alexander E, Goldberg L, Das AF, Sandrock C, Paukner S, et al. Lefamulin efficacy and safety in a pooled phase 3 clinical trial population with community—acquired bacterial pneumonia and common clinical comorbidities. BMC Pulm Med. 2021;21(154):1–10.

4. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

5. Bills GF, Gloer JB. Biologically active secondary metabolites from the fungi. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.FUNK-0009-2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3