High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum

Author:

Jungmann Lukas,Hoffmann Sarah Lisa,Lang Caroline,De Agazio Raphaela,Becker Judith,Kohlstedt Michael,Wittmann Christoph

Abstract

Abstract Background Extremolytes enable microbes to withstand even the most extreme conditions in nature. Due to their unique protective properties, the small organic molecules, more and more, become high-value active ingredients for the cosmetics and the pharmaceutical industries. While ectoine, the industrial extremolyte flagship, has been successfully commercialized before, an economically viable route to its highly interesting derivative 5-hydroxyectoine (hydroxyectoine) is not existing. Results Here, we demonstrate high-level hydroxyectoine production, using metabolically engineered strains of C. glutamicum that express a codon-optimized, heterologous ectD gene, encoding for ectoine hydroxylase, to convert supplemented ectoine in the presence of sucrose as growth substrate into the desired derivative. Fourteen out of sixteen codon-optimized ectD variants from phylogenetically diverse bacterial and archaeal donors enabled hydroxyectoine production, showing the strategy to work almost regardless of the origin of the gene. The genes from Pseudomonas stutzeri (PST) and Mycobacterium smegmatis (MSM) worked best and enabled hydroxyectoine production up to 97% yield. Metabolic analyses revealed high enrichment of the ectoines inside the cells, which, inter alia, reduced the synthesis of other compatible solutes, including proline and trehalose. After further optimization, C. glutamicum Ptuf ectDPST achieved a titre of 74 g L−1 hydroxyectoine at 70% selectivity within 12 h, using a simple batch process. In a two-step procedure, hydroxyectoine production from ectoine, previously synthesized fermentatively with C. glutamicum ectABCopt, was successfully achieved without intermediate purification. Conclusions C. glutamicum is a well-known and industrially proven host, allowing the synthesis of commercial products with granted GRAS status, a great benefit for a safe production of hydroxyectoine as active ingredient for cosmetic and pharmaceutical applications. Because ectoine is already available at commercial scale, its use as precursor appears straightforward. In the future, two-step processes might provide hydroxyectoine de novo from sugar.

Funder

Bundesministerium für Bildung und Forschung

Leibniz-Sience Campus Living Therapeutic Materials

Hans and Ruth Giessen Foundation

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3