Mineralization of the herbicide swep by a two-strain consortium and characterization of a new amidase for hydrolyzing swep

Author:

Zhang LongORCID,Hang Ping,Zhou Xiyi,Dai Chen,He Ziyi,Jiang Jiandong

Abstract

Abstract Background Swep is an excellent carbamate herbicide that kills weeds by interfering with metabolic processes and inhibiting cell division at the growth point. Due to the large amount of use, swep residues in soil and water not only cause environmental pollution but also accumulate through the food chain, ultimately pose a threat to human health. This herbicide is degraded in soil mainly by microbial activity, but no studies on the biotransformation of swep have been reported. Results In this study, a consortium consisting of two bacterial strains, Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34, was enriched from a contaminated soil sample and shown to be capable of mineralizing swep. Swep was first transformed by Comamonas sp. SWP-3 to the intermediate 3,4-dichloroaniline (3,4-DCA), after which 3,4-DCA was mineralized by Alicycliphilus sp. PH-34. An amidase gene, designated as ppa, responsible for the transformation of swep into 3,4-DCA was cloned from strain SWP-3. The expressed Ppa protein efficiently hydrolyzed swep and a number of other structural analogues, such as propanil, chlorpropham and propham. Ppa shared less than 50% identity with previously reported arylamidases and displayed maximal activity at 30 °C and pH 8.6. Gly449 and Val266 were confirmed by sequential error prone PCR to be the key catalytic sites for Ppa in the conversion of swep. Conclusions These results provide additional microbial resources for the potential remediation of swep-contaminated sites and add new insights into the catalytic mechanism of amidase in the hydrolysis of swep.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3