Structure and biosynthesis of carotenoids produced by a novel Planococcus sp. isolated from South Africa

Author:

Moyo Anesu ConradORCID,Dufossé Laurent,Giuffrida Daniele,van Zyl Leonardo Joaquim,Trindade MarlaORCID

Abstract

Abstract Background The genus Planococcus is comprised of halophilic bacteria generally reported for the production of carotenoid pigments and biosurfactants. In previous work, we showed that the culturing of the orange-pigmented Planococcus sp. CP5-4 isolate increased the evaporation rate of industrial wastewater brine effluent, which we attributed to the orange pigment. This demonstrated the potential application of this bacterium for industrial brine effluent management in evaporation ponds for inland desalination plants. Here we identified a C30-carotenoid biosynthetic gene cluster responsible for pigment biosynthesis in Planococcus sp. CP5-4 through isolation of mutants and genome sequencing. We further compare the core genes of the carotenoid biosynthetic gene clusters identified from different Planococcus species’ genomes which grouped into gene cluster families containing BGCs linked to different carotenoid product chemotypes. Lastly, LC–MS analysis of saponified and unsaponified pigment extracts obtained from cultures of Planococcus sp. CP5-4, revealed the structure of the main (predominant) glucosylated C30-carotenoid fatty acid ester produced by Planococcus sp. CP5-4. Results Genome sequence comparisons of isolated mutant strains of Planococcus sp. CP5-4 showed deletions of 146 Kb and 3 Kb for the non-pigmented and “yellow” mutants respectively. Eight candidate genes, likely responsible for C30-carotenoid biosynthesis, were identified on the wild-type genome region corresponding to the deleted segment in the non-pigmented mutant. Six of the eight candidate genes formed a biosynthetic gene cluster. A truncation of crtP was responsible for the “yellow” mutant phenotype. Genome annotation revealed that the genes encoded 4,4′-diapolycopene oxygenase (CrtNb), 4,4′- diapolycopen-4-al dehydrogenase (CrtNc), 4,4′-diapophytoene desaturase (CrtN), 4,4′- diaponeurosporene oxygenase (CrtP), glycerol acyltransferase (Agpat), family 2 glucosyl transferase 2 (Gtf2), phytoene/squalene synthase (CrtM), and cytochrome P450 hydroxylase enzymes. Carotenoid analysis showed that a glucosylated C30-carotenoid fatty acid ester, methyl 5-(6-C17:3)-glucosyl-5, 6′-dihydro-apo-4, 4′-lycopenoate was the main carotenoid compound produced by Planococcus sp. CP5-4. Conclusion We identified and characterized the carotenoid biosynthetic gene cluster and the C30-carotenoid compound produced by Planococcus sp. CP5-4. Mass-spectrometry guided analysis of the saponified and unsaponified pigment extracts showed that methyl 5-glucosyl-5, 6-dihydro-apo-4, 4′-lycopenoate esterified to heptadecatrienoic acid (C17:3). Furthermore, through phylogenetic analysis of the core carotenoid BGCs of Planococcus species we show that various C30-carotenoid product chemotypes, apart from methyl 5-glucosyl-5, 6-dihydro-apo-4, 4′-lycopenoate and 5-glucosyl-4, 4-diaponeurosporen-4′-ol-4-oic acid, may be produced that could offer opportunities for a variety of applications.

Funder

National Research Foundation

Water Research Commission

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3