Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose

Author:

Battling SvenjaORCID,Wohlers KarenORCID,Igwe ChikaORCID,Kranz AngelaORCID,Pesch MatthiasORCID,Wirtz AstridORCID,Baumgart MeikeORCID,Büchs JochenORCID,Bott MichaelORCID

Abstract

Abstract Background 5-Ketofructose (5-KF) has recently been identified as a promising non-nutritive natural sweetener. Gluconobacter oxydans strains have been developed that allow efficient production of 5-KF from fructose by plasmid-based expression of the fructose dehydrogenase genes fdhSCL of Gluconobacter japonicus. As plasmid-free strains are preferred for industrial production of food additives, we aimed at the construction of efficient 5-KF production strains with the fdhSCL genes chromosomally integrated. Results For plasmid-free 5-KF production, we selected four sites in the genome of G. oxydans IK003.1 and inserted the fdhSCL genes under control of the strong P264 promoter into each of these sites. All four recombinant strains expressed fdhSCL and oxidized fructose to 5-KF, but site-specific differences were observed suggesting that the genomic vicinity influenced gene expression. For further improvement, a second copy of the fdhSCL genes under control of P264 was inserted into the second-best insertion site to obtain strain IK003.1::fdhSCL2. The 5-KF production rate and the 5-KF yield obtained with this double-integration strain were considerably higher than for the single integration strains and approached the values of IK003.1 with plasmid-based fdhSCL expression. Conclusion We identified four sites in the genome of G. oxydans suitable for expression of heterologous genes and constructed a strain with two genomic copies of the fdhSCL genes enabling efficient plasmid-free 5-KF production. This strain will serve as basis for further metabolic engineering strategies aiming at the use of alternative carbon sources for 5-KF production and for bioprocess optimization.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3