Anti-inflammatory potential of Penicillium brefeldianum endophytic fungus supported with phytochemical profiling

Author:

Saleh Asmaa,Negm Walaa A.,El-Masry Thanaa A.,Eliwa Duaa,Alotaibi Badriyah,Alosaimi Manal E.,Alotaibi Khalid Nijr,Magdeldin Sameh,Mahgoub Sebaey,Elekhnawy Engy

Abstract

AbstractVarious factors contribute to the development of the acute inflammation process, like the pro-inflammatory cytokines, certain enzymes as well as oxidative stress mediators. The anti-inflammatory potential of the endophytic fungus Penicillium brefeldianum was explored in carrageenan-induced inflammation in rats. After isolation of the fungus from Acalypha hispida leaves, it was identified by 18S rRNA gene sequencing. Then, its phytochemical profile was elucidated using LC–ESI–MS/MS technique. There was a remarkable decrease in the edema weight in the endophytic fungi-treated group (200 mg/kg). Also, this group had few inflammatory cells and thickened epidermis with underlying moderate collagenosis when stained with haematoxylin and eosin. Besides, immunostaining with monoclonal antibodies of cyclooxygenase-2 and tumor necrosis factor alpha showed a decrease in the positive immune cells in the endophytic fungi treated group (200 mg/kg) in relation to the positive control. Interestingly, the levels of the inflammatory as well as oxidative stress markers, including prostaglandin E2, nitric oxide, and malondialdehyde, which are hallmarks of the inflammatory process, considerably diminished (p < 0.05) in this group. qRT-PCR was utilised to elucidate the impact of the endophytic fungi treatment on the expression of interleukins (IL-1β and IL-6) genes, which decreased in comparison with the positive control group. Consequently, we can deduce that P. brefeldianum endophytic fungus has a promising anti-inflammatory potential and should be extensively studied on a broader range in the near future. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3