Droplet-based microfluidic platform for detecting agonistic peptides that are self-secreted by yeast expressing a G-protein-coupled receptor

Author:

Asama Ririka,Liu Cher J. S.,Tominaga Masahiro,Cheng Yu-Ru,Nakamura Yasuyuki,Kondo Akihiko,Wang Hsiang-Yu,Ishii Jun

Abstract

Abstract Background Single-cell droplet microfluidics is an important platform for high-throughput analyses and screening because it provides an independent and compartmentalized microenvironment for reaction or cultivation by coencapsulating individual cells with various molecules in monodisperse microdroplets. In combination with microbial biosensors, this technology becomes a potent tool for the screening of mutant strains. In this study, we demonstrated that a genetically engineered yeast strain that can fluorescently sense agonist ligands via the heterologous expression of a human G-protein-coupled receptor (GPCR) and concurrently secrete candidate peptides is highly compatible with single-cell droplet microfluidic technology for the high-throughput screening of new agonistically active peptides. Results The water-in-oil microdroplets were generated using a flow-focusing microfluidic chip to encapsulate engineered yeast cells coexpressing a human GPCR [i.e., angiotensin II receptor type 1 (AGTR1)] and a secretory agonistic peptide [i.e., angiotensin II (Ang II)]. The single yeast cells cultured in the droplets were then observed under a microscope and analyzed using image processing incorporating machine learning techniques. The AGTR1-mediated signal transduction elicited by the self-secreted Ang II peptide was successfully detected via the expression of a fluorescent reporter in single-cell yeast droplet cultures. The system could also distinguish Ang II analog peptides with different agonistic activities. Notably, we further demonstrated that the microenvironment of the single-cell droplet culture enabled the detection of rarely existing positive (Ang II-secreting) yeast cells in the model mixed cell library, whereas the conventional batch-culture environment using a shake flask failed to do so. Thus, our approach provided compartmentalized microculture environments, which can prevent the diffusion, dilution, and cross-contamination of peptides secreted from individual single yeast cells for the easy identification of GPCR agonists. Conclusions We established a droplet-based microfluidic platform that integrated an engineered yeast biosensor strain that concurrently expressed GPCR and self-secreted the agonistic peptides. This offers individually isolated microenvironments that allow the culture of single yeast cells secreting these peptides and gaging their signaling activities, for the high-throughput screening of agonistic peptides. Our platform base on yeast GPCR biosensors and droplet microfluidics will be widely applicable to metabolic engineering, environmental engineering, and drug discovery.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3