Efficient malachite green biodegradation by Pseudomonas plecoglossicide MG2: process optimization, application in bioreactors, and degradation pathway

Author:

El-Bendary Magda A.,Fawzy Mariam E.,Abdelraof Mohamed,El-Sedik Mervat,Allam Mousa A.

Abstract

AbstractMicrobial degradation of synthetic dyes is considered a promising green dye detoxification, cost-effective and eco-friendly approach. A detailed study on the decolorization and degradation of malachite green dye (MG) using a newly isolated Pseudomonas plecoglossicide MG2 was carried out. Optimization of MG biodegradation by the tested organism was investigated by using a UV–Vis spectrophotometer and the resultant degraded products were analyzed by liquid chromatography–mass spectrometry and FTIR. Also, the cytotoxicity of MG degraded products was studied on a human normal retina cell line. The optimum conditions for the significant maximum decolorization of MG dye (90–93%) by the tested organism were pH 6–7, inoculum size 4–6%, and incubation temperature 30–35 °C, under static and aerobic conditions. The performance of Pseudomonas plecoglossicide MG2 grown culture in the bioreactors using simulated wastewater was assessed. MG degradation (99% at 100 and 150 mg MG/l at an optimal pH) and COD removal (95.95%) by using Pseudomonas plecoglossicide MG2 culture were the best in the tested culture bioreactor in comparison with that in activated sludge or tested culture-activated sludge bioreactors.The FTIR spectrum of the biodegraded MG displayed significant spectral changes, especially in the fingerprint region 1500–500 as well as disappearance of some peaks and appearance of new peaks. Twelve degradation intermediates were identified by LC–MS. They were desmalachite green, didesmalachite green, tetradesmalachite green, 4-(diphenylmethyl)aniline, malachite green carbinol, bis[4-(dimethylamino)phenyl]methanone, [4-(dimethylamino)phenyl][4-(methyl-amino)phenyl]methanone, bis[4-(methylamino)phenyl]methanone, (4-amino- phenyl)[4-(methylamino)phenyl]methanone, bis(4-amino phenyl)methanone, (4-amino phenyl)methanone, and 4-(dimathylamino)benzaldehyde. According to LC–MS and FTIR data, two pathways for MG degradation by using Pseudomonas plecoglossicide MG2 were proposed. MG showed cytotoxicity to human normal retina cell line with LC50 of 28.9 µg/ml and LC90 at 79.7 µg/ml. On the other hand, MG bio-degraded products showed no toxicity to the tested cell line. Finally, this study proved that Pseudomonas plecoglossicide MG2 could be used as an efficient, renewable, eco-friendly, sustainable and cost-effective biotechnology tool for the treatment of dye wastewater effluent.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3