Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis

Author:

Takenaka Musashi,Kamasaka Kouhei,Daryong Kim,Tsuchikane Keiko,Miyazawa Seiha,Fujihana Saeko,Hori Yoshimi,Vavricka Christopher J.,Hosoyama Akira,Kawasaki Hiroko,Shirai Tomokazu,Araki Michihiro,Nakagawa Akira,Minami Hiromichi,Kondo Akihiko,Hasunuma Tomohisa

Abstract

Abstract Background Computational mining of useful enzymes and biosynthesis pathways is a powerful strategy for metabolic engineering. Through systematic exploration of all conceivable combinations of enzyme reactions, including both known compounds and those inferred from the chemical structures of established reactions, we can uncover previously undiscovered enzymatic processes. The application of the novel alternative pathways enables us to improve microbial bioproduction by bypassing or reinforcing metabolic bottlenecks. Benzylisoquinoline alkaloids (BIAs) are a diverse group of plant-derived compounds with important pharmaceutical properties. BIA biosynthesis has developed into a prime example of metabolic engineering and microbial bioproduction. The early bottleneck of BIA production in Escherichia coli consists of 3,4-dihydroxyphenylacetaldehyde (DHPAA) production and conversion to tetrahydropapaveroline (THP). Previous studies have selected monoamine oxidase (MAO) and DHPAA synthase (DHPAAS) to produce DHPAA from dopamine and oxygen; however, both of these enzymes produce toxic hydrogen peroxide as a byproduct. Results In the current study, in silico pathway design is applied to relieve the bottleneck of DHPAA production in the synthetic BIA pathway. Specifically, the cytochrome P450 enzyme, tyrosine N-monooxygenase (CYP79), is identified to bypass the established MAO- and DHPAAS-mediated pathways in an alternative arylacetaldoxime route to DHPAA with a peroxide-independent mechanism. The application of this pathway is proposed to result in less formation of toxic byproducts, leading to improved production of reticuline (up to 60 mg/L at the flask scale) when compared with that from the conventional MAO pathway. Conclusions This study showed improved reticuline production using the bypass pathway predicted by the M-path computational platform. Reticuline production in E. coli exceeded that of the conventional MAO-mediated pathway. The study provides a clear example of the integration of pathway mining and enzyme design in creating artificial metabolic pathways and suggests further potential applications of this strategy in metabolic engineering.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3