Abstract
Abstract
Background
Biobased 5-(hydroxymethyl)furfural (5-HMF) is an important platform that offers numerous possibilities for upgrading to a range of chemical, material and fuel products. One reaction of special interest is the carboligation of 5-HMF into C12 compounds, including 5,5’-bis(hydroxymethyl)furoin (DHMF) and its subsequent oxidation to 5,5’-bis(hydroxymethyl)furil (BHMF), due to their potential applications as building blocks for polymers and hydrocarbon fuels.
Objectives
This study was aimed at evaluating the use of whole cells of Escherichia coli carrying recombinant Pseudomonas fluorescens benzaldehyde lyase as biocatalysts for 5-HMF carboligation, recovery of the C12 derivatives DHMF and BHMF, and testing the reactivity of the carbonyl groups for hydrazone formation for potential use as cross-linking agents in surface coatings. The effects of different parameters on the reaction were investigated to find the conditions for achieving high product yield and productivity.
Results
The reaction with 5 g/L 5-HMF using 2 gCDW/L recombinant cells in 10% dimethyl carbonate, pH 8.0 at 30 °C resulted in DHMF yield of 81.7% (0.41 mol/mol) at 1 h, and BHMF yield of 96.7% (0.49 mol/mol) at 72 h reaction time. Fed-batch biotransformation generated a maximum DHMF concentration of 53.0 g/L (or 26.5 g DHMF/g cell catalyst) with productivity of 10.6 g/L.h, after five feeds of 20 g/L 5-HMF. Both DHMF and BHMF reacted with adipic acid dihydrazide to form hydrazone that was confirmed by Fourier-transform infrared spectroscopy and 1H NMR.
Conclusion
The study demonstrates the potential application of recombinant E. coli cells for cost-effective production of commercially relevant products.
Funder
Svenska Forskningsrådet Formas
Lund University
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference49 articles.
1. Brandt AR, Millard-Ball A, Ganser M, Gorelick SM. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline. Environ Sci Technol. 2013;47(14):8031–41.
2. Ban J, Messmer H-P, Attaba M, Diendorfer C. Ch 3 Oil demand. In: Griffin J, editor. World Oil Outlook 2045. Vienna: OPEC Secretariat; 2022.
3. Huang K, Peng X, Kong L, Wu W, Chen Y, Maravelias CT. Greenhouse gas emission mitigation potential of chemicals produced from biomass. ACS Sustain Chem Eng. 2021;9(43):14480–7.
4. Hou Q, Qi X, Zhen M, Qian H, Nie Y, Bai C, Zhang S, Bai X, Ju M. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chem. 2021;23(1):119–231.
5. Hayes DJM. Biomass composition and its relevance to biorefining. In: Triantafyllidis K, Lappas A, Stöcker M, editors. The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. Amsterdam: Elsevier; 2013.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献