Transcriptomics and metabolomics analysis of L-phenylalanine overproduction in Escherichia coli

Author:

Sun Wei,Ding Dongqin,Bai Danyang,Lin Yang,Zhu Yaru,Zhang Cuiying,Zhang Dawei

Abstract

Abstract Background Highly efficient production of L-phenylalanine (L-Phe) in E. coli has been achieved by multiple rounds of random mutagenesis and modification of key genes of the shikimate (SHIK) and L-Phe branch pathways. In this study, we performed transcriptomic (16, 24 and 48 h) and metabolomic analyses (8, 16, 24, 32,40, and 48 h) based on time sequences in an engineered E. coli strain producing L-Phe, aiming to reveal the overall changes of metabolic activities during the fermentation process. Results The largest biomass increase rate and the highest production rate were seen at 16 h and 24 h of fermentation, respectively reaching 5.9 h−1 and 2.76 g/L/h, while the maximal L-Phe titer of 60 g/L was accumulated after 48 h of fermentation. The DEGs and metabolites involved in the EMP, PP, TCA, SHIIK and L-Phe-branch pathways showed significant differences at different stages of fermentation. Specifically, the significant upregulation of genes encoding rate-limiting enzymes (aroD and yidB) and key genes (aroF, pheA and aspC) pushed more carbon flux toward the L-Phe synthesis. The RIA changes of a number of important metabolites (DAHP, DHS, DHQ, Glu and PPN) enabled the adequate supply of precursors for high-yield L-Phe production. In addition, other genes related to Glc transport and phosphate metabolism increased the absorption of Glc and contributed to rerouting the carbon flux into the L-Phe-branch. Conclusions Transcriptomic and metabolomic analyses of an L-Phe overproducing strain of E. coli confirmed that precursor supply was not a major limiting factor in this strain, whereas the rational distribution of metabolic fluxes was achieved by redistributing the carbon flux (for example, the expression intensity of the genes tyrB, aspC, aroL and aroF/G/H or the activity of these enzymes is increased to some extent), which is the optimal strategy for enhancing L-Phe production.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

ianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3