Abstract
Abstract
Background
Bioethanol is one of the most representative eco-friendly fuels developed to replace the non-renewable fossil fuels and is the most successful commercially available bio-conversion technology till date. With the availability of inexpensive carbon sources, such as cellulosic biomass, bioethanol production has become cheaper and easier to perform, which can facilitate the development of methods for converting ethanol into higher value-added biochemicals. In this study, a bioconversion process using Pseudomonas putida as a biocatalyst was established, wherein ethanol was converted to mevalonate. Since ethanol can be converted directly to acetyl-CoA, bypassing its conversion to pyruvate, there is a possibility that ethanol can be converted to mevalonate without producing pyruvate-derived by-products. Furthermore, P. putida seems to be highly resistant to the toxicity caused by terpenoids, and thus can be useful in conducting terpenoid production research.
Results
In this study, we first expressed the core genes responsible for mevalonate production (atoB, mvaS, and mvaE) in P. putida and mevalonate production was confirmed. Thereafter, through an improvement in genetic stability and ethanol metabolism manipulation, mevalonate production was enhanced up to 2.39-fold (1.70 g/L vs. 4.07 g/L) from 200 mM ethanol with an enhancement in reproducibility of mevalonate production. Following this, the metabolic characteristics related to ethanol catabolism and mevalonate production were revealed by manipulations to reduce fatty acid biosynthesis and optimize pH by batch fermentation. Finally, we reached a product yield of 0.41 g mevalonate/g ethanol in flask scale culture and 0.32 g mevalonate/g ethanol in batch fermentation. This is the highest experimental yield obtained from using carbon sources other than carbohydrates till date and it is expected that further improvements will be made through the development of fermentation methods.
Conclusion
Pseudomonas putida was investigated as a biocatalyst that can efficiently convert ethanol to mevalonate, the major precursor for terpenoid production, and this research is expected to open new avenues for the production of terpenoids using microorganisms that have not yet reached the stage of mass production.
Funder
Ministry of Science and ICT, Korea
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference27 articles.
1. Abubackar HN, Veiga MC, Kennes C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol. 2015;186:122–7.
2. Zabed H, Sahu JN, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energ Rev. 2016;66:751–74.
3. Abubackar HN, Veiga MC, Kennes C. Bioconversion of carbon monoxide to bioethanol: an optimization study. In: Proceedings of the biotechniques for air pollution control and bioenergy IV, La Coruña, Spain. 2011. p. 12–4.
4. Bengelsdorf FB, Straub M, Dürre P. Bacterial synthesis gas (syngas) fermentation. Environ Technol. 2013;34:1639–51.
5. Wang J, Niyompanich S, Tai YS, Wang J, Bai W, Mahida P, Gao T, Zhang K. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Appl Environ Microbiol. 2016;82:7176–84.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献