Extracellular vesicles and pasteurized cells derived from Akkermansia muciniphila protect against high-fat induced obesity in mice

Author:

Ashrafian Fatemeh,Keshavarz Azizi Raftar Shahrbanoo,Lari Arezou,Shahryari Arefeh,Abdollahiyan Sara,Moradi Hamid Reza,Masoumi Morteza,Davari Mehdi,khatami Shohreh,Omrani Mir Davood,Vaziri Farzam,Masotti Andrea,Siadat Seyed DavarORCID

Abstract

Abstract Background Several studies have shown that probiotics have beneficial effects on weight control and metabolic health. In addition to probiotics, recent studies have investigated the effects of paraprobiotics and postbiotics. Therefore, we evaluated the preventive effects of live and pasteurized Akkermansia muciniphila MucT (A. muciniphila) and its extracellular vesicles (EVs) on HFD-induced obesity. Results The results showed that body weight, metabolic tissues weight, food consumption, and plasma metabolic parameters were increased in the HFD group, whereas A. muciniphila preventive treatments inhibited these HFD. The effects of pasteurized A. muciniphila and its extracellular vesicles were more noticeable than its active form. The HFD led to an increase in the colonic, adipose tissue, and liver inflammations and increased the expression of genes involved in lipid metabolism and homeostasis. Nevertheless, these effects were inhibited in mice that were administered A. muciniphila and its EVs. The assessment of the gut microbiota revealed significant differences in the microbiota composition after feeding with HFD. However, all treatments restored the alterations in some bacterial genera and closely resemble the control group. Also, the correlation analysis indicated that some gut microbiota might be associated with obesity-related indices. Conclusions Pasteurized A. muciniphila and its EVs, as paraprobiotic and postbiotic agents, were found to play a key role in the regulation of metabolic functions to prevent obesity, probably by affecting the gut-adipose-liver axis. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3