Increasing cellular fitness and product yields in Pseudomonas putida through an engineered phosphoketolase shunt

Author:

Bruinsma Lyon,Martin-Pascual Maria,Kurnia Kesi,Tack Marieken,Hendriks Simon,van Kranenburg Richard,dos Santos Vitor A. P. Martins

Abstract

Abstract Background Pseudomonas putida has received increasing interest as a cell factory due to its remarkable features such as fast growth, a versatile and robust metabolism, an extensive genetic toolbox and its high tolerance to oxidative stress and toxic compounds. This interest is driven by the need to improve microbial performance to a level that enables biologically possible processes to become economically feasible, thereby fostering the transition from an oil-based economy to a more sustainable bio-based one. To this end, one of the current strategies is to maximize the product-substrate yield of an aerobic biocatalyst such as P. putida during growth on glycolytic carbon sources, such as glycerol and xylose. We demonstrate that this can be achieved by implementing the phosphoketolase shunt, through which pyruvate decarboxylation is prevented, and thus carbon loss is minimized. Results In this study, we introduced the phosphoketolase shunt in the metabolism of P. putida KT2440. To maximize the effect of this pathway, we first tested and selected a phosphoketolase (Xfpk) enzyme with high activity in P. putida. Results of the enzymatic assays revealed that the most efficient Xfpk was the one isolated from Bifidobacterium breve. Using this enzyme, we improved the P. putida growth rate on glycerol and xylose by 44 and 167%, respectively, as well as the biomass yield quantified by OD600 by 50 and 30%, respectively. Finally, we demonstrated the impact on product formation and achieved a 38.5% increase in mevalonate and a 25.9% increase in flaviolin yield from glycerol. A similar effect was observed on the mevalonate-xylose and flaviolin-xylose yields, which increased by 48.7 and 49.4%, respectively. Conclusions Pseudomonas putida with the implemented Xfpk shunt grew faster, reached a higher final OD600nm and provided better product-substrate yields than the wild type. By reducing the pyruvate decarboxylation flux, we significantly improved the performance of this important workhorse for industrial applications. This work encompasses the first steps towards full implementation of the non-oxidative glycolysis (NOG) or the glycolysis alternative high carbon yield cycle (GATCHYC), in which a substrate is converted into products without CO2 loss These enhanced properties of P. putida will be crucial for its subsequent use in a range of industrial processes.

Funder

European Commission

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3