Optimized methyl donor and reduced precursor degradation pathway for seleno-methylselenocysteine production in Bacillus subtilis

Author:

Yin XianORCID,Zhao Meiyi,Zhou Yu,Yang Hulin,Liao Yonghong,Wang FenghuanORCID

Abstract

Abstract Background Seleno-methylselenocysteine (SeMCys) is an effective component of selenium supplementation with anti-carcinogenic potential that can ameliorate neuropathology and cognitive deficits. In a previous study, a SeMCys producing strain of Bacillus subtilis GBACB was generated by releasing feedback inhibition by overexpression of cysteine-insensitive serine O-acetyltransferase, enhancing the synthesis of S-adenosylmethionine as methyl donor by overexpression of S-adenosylmethionine synthetase, and expressing heterologous selenocysteine methyltransferase. In this study, we aimed to improve GBACB SeMCys production by synthesizing methylmethionine as a donor to methylate selenocysteine and by inhibiting the precursor degradation pathway. Results First, the performance of three methionine S-methyltransferases that provide methylmethionine as a methyl donor for SeMCys production was determined. Integration of the NmMmt gene into GBACB improved SeMCys production from 20.7 to 687.4 μg/L. Next, the major routes for the degradation of selenocysteine, which is the precursor of SeMCys, were revealed by comparing selenocysteine hyper-accumulating and non-producing strains at the transcriptional level. The iscSB knockout strain doubled SeMCys production. Moreover, deleting sdaA, which is responsible for the degradation of serine as a precursor of selenocysteine, enhanced SeMCys production to 4120.3 μg/L. Finally, the culture conditions in the flasks were optimized. The strain was tolerant to higher selenite content in the liquid medium and the titer of SeMCys reached 7.5 mg/L. Conclusions The significance of methylmethionine as a methyl donor for SeMCys production in B. subtilis is reported, and enhanced precursor supply facilitates SeMCys synthesis. The results represent the highest SeMCys production to date and provide insight into Se metabolism.

Funder

National Natural Science Foundation of China

Beijing Municipal Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3