Enhancing extracellular production of lipoxygenase in Escherichia coli by signal peptides and autolysis system

Author:

Pang Cuiping,Liu Song,Zhang GuoqiangORCID,Zhou Jingwen,Du Guocheng,Li Jianghua

Abstract

Abstract Background Lipoxygenase (LOX) is a non-heme iron containing dioxygenase that is widely used to improve food quality and produce active drug intermediates and biodiesel. Escherichia coli is one of the most widely used host microorganisms for recombinant protein expression; however, its weak extracellular secretion ability precludes its effective production of recombinant proteins into the extracellular environment. To facilitate subsequent characterization and application of LOX, improving its secretion efficiency from E. coli is a major challenge that needs to be solved. Results Several strategies were adopted to improve the extracellular secretion of LOX based on the signal peptides and cell wall permeability of E. coli. Here, we studied the effect of signal peptides on LOX secretion, which increased the secretory capacity for LOX marginally. Although surfactants could increase the permeability of the cell membrane to promote LOX secretion, the extracellular LOX yield could not meet the requirements of industrialization production. Subsequently, an autolysis system was constructed in E. coli based on the bacteriophage lysis gene ΦX174-E to enhance the production of extracellular proteins. Thus, the extracellular production of LOX was achieved and the content of inclusion bodies in the cell was reduced by optimizing cell lysis conditions. The extracellular LOX yield reached 368 ± 1.4 U mL−1 in a 5-L bioreactor under optimized lysis conditions that is, an induction time and temperature, and arabinose concentration of 5 h, 25 °C, and 0.6 mM, respectively. Conclusions In this study, the different signal peptides and cell autolysis system were developed and characterized for extracellular LOX production in E. coli. Finally, the cell autolysis system presented a slight advantage on extracellular LOX yield, which also provides reference for other protein extracellular production.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3