Efficient secretory production of proline/alanine/serine (PAS) biopolymers in Corynebacterium glutamicum yielding a monodisperse biological alternative to polyethylene glycol (PEG)

Author:

Friedrich L.,Kikuchi Y.,Matsuda Y.,Binder U.,Skerra A.

Abstract

Abstract Background PAS biopolymers are recombinant polypeptides comprising the small uncharged l-amino acids Pro, Ala and/or Ser which resemble the widely used poly-ethylene glycol (PEG) in terms of pronounced hydrophilicity. Likewise, their random chain behaviour in physiological solution results in a strongly expanded hydrodynamic volume. Thus, apart from their use as fusion partner for biopharmaceuticals to achieve prolonged half-life in vivo, PAS biopolymers appear attractive as substitute for PEG—or other poorly degradable chemical polymers—in many areas. As a prerequisite for the wide application of PAS biopolymers at affordable cost, we have established their highly efficient biotechnological production in Corynebacterium glutamicum serving as a well characterized bacterial host organism. Results Using the CspA signal sequence, we have secreted two representative PAS biopolymers as polypeptides with ~ 600 and ~ 1200 amino acid residues, respectively. Both PAS biopolymers were purified from the culture supernatant by means of a simple downstream process in a truly monodisperse state as evidenced by ESI–MS. Yields after purification were up to ≥ 4 g per liter culture, with potential for further increase by strain optimization as well as fermentation and bioprocess development. Beyond direct application as hydrocolloids or to exploit their rheological properties, such PAS biopolymers are suitable for site-specific chemical conjugation with pharmacologically active molecules via their unique terminal amino or carboxyl groups. To enable the specific activation of the carboxylate, without interference by the free amino group, we generated a blocked N-terminus for the PAS(1200) polypeptide simply by introducing an N-terminal Gln residue which, after processing of the signal peptide, was cyclised to a chemically inert pyroglutamyl group upon acid treatment. The fact that PAS biopolymers are genetically encoded offers further conjugation strategies via incorporation of amino acids with reactive side chains (e.g., Cys, Lys, Glu/Asp) at defined positions. Conclusions Our new PAS expression platform using Corynex® technology opens the way to applications of PASylation® technology in multiple areas such as the pharmaceutical industry, cosmetics and food technology.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3