Method for plasmid-based antibiotic-free fermentation

Author:

Brechun Katherine E.,Förschle Marion,Schmidt Marlen,Kranz Harald

Abstract

Abstract Background Antibiotic-based plasmid selection and maintenance is a core tool in molecular biology; however, while convenient, this strategy has numerous drawbacks for biological manufacturing. Overuse of antibiotics and antibiotic resistance genes (ARG) contributes to the development of antimicrobial resistance, which is a growing threat to modern medicine. Antibiotics themselves are costly and therefore often omitted in fermentations, leading to plasmid loss and a corresponding loss in product yield. Furthermore, constitutive expression of a plasmid-encoded antibiotic resistance gene imposes a significant metabolic burden on the cells. For many fermentation products (e.g., in nutrition and medicine), the use of antibiotic resistance genes is subject to strict regulations and should be avoided. We present a method for plasmid selection and maintenance with stringent selection pressure that is independent of antibiotics and ARG. Furthermore, it can be used without any restrictions regarding culture medium and temperature. Results The developed method involves modification of a bacterial strain such that an essential gene is expressed genomically under the control of an inducible promoter. A copy of the same essential gene with the endogenous promoter is supplied on a plasmid for selection. In the absence of the inducer for the genomic copy of the essential gene, cells rely on expression of the plasmid-encoded gene copy, leading to tight selection for plasmid maintenance. Induction of the genomic copy of the essential gene enables the engineered strain to be propagated in the absence of a plasmid. Here, we describe the genetic setup and demonstrate long-term, tight selection for plasmid maintenance with a variety of different plasmids and E. coli strains. Conclusions This method facilitates plasmid-based fermentations by eliminating the need for antibiotic selection and improving plasmid maintenance.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3