Substantially improving the enantioconvergence of PvEH1, a Phaseolus vulgaris epoxide hydrolase, towards m-chlorostyrene oxide by laboratory evolution

Author:

Zong Xun-Cheng,Li Chuang,Xu Yao-Hui,Hu Die,Hu Bo-Chun,Zang Jia,Wu Min-Chen

Abstract

Abstract Background Epoxide hydrolase can regioselectively catalyze the oxirane ring-opening hydrolysis of rac-epoxides producing the corresponding chiral diols. In our laboratory, a gene named pveh1 encoding an EH from Phaseolus vulgaris was cloned. Although the directed modification of PvEH1 was carried out, the mutant PvEH1Y3 showed a limited degree of enantioconvergence towards racemic (rac-) m-chlorostyrene oxide (mCSO). Results PvEH1 and PvEH1Y3 were combinatively subjected to laboratory evolution to further enhance the enantioconvergence of PvEH1Y3 towards rac-mCSO. Firstly, the substrate-binding pocket of PvEH1 was identified using a CAVER 3.0 software, and divided into three zones. After all residues in zones 1 and 3 were subjected to leucine scanning, two E. coli transformants, E. coli/pveh1Y149L and /pveh1P184L, were selected, by which rac-mCSO was transformed into (R)-m-chlorophenyl-1,2-ethanediol (mCPED) having 55.1% and 27.2% eep. Secondly, two saturation mutagenesis libraries, E. coli/pveh1Y149X and /pveh1P184X (X: any one of 20 residues) were created at sites Y149 and P184 of PvEH1. Among all transformants, both E. coli/pveh1Y149L (65.8% αS and 55.1% eep) and /pveh1P184W (66.6% αS and 59.8% eep) possessed the highest enantioconvergences. Finally, the combinatorial mutagenesis was conducted by replacements of both Y149L and P184W in PvEH1Y3, constructing E. coli/pveh1Y3Z2, whose αS reached 97.5%, higher than that (75.3%) of E. coli/pveh1Y3. In addition, the enantioconvergent hydrolysis of 20 mM rac-mCSO was performed by E. coli/pveh1Y3Z2, giving (R)-mCPED with 95.2% eep and 97.2% yield. Conclusions In summary, the enantioconvergence of PvEH1Y3Z2 was successfully improved by laboratory evolution, which was based on the study of substrate-binding pocket by leucine scanning. Our present work introduced an effective strategy for the directed modification of enantioconvergence of PvEH1.

Funder

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Provence

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3