Author:
Zong Xun-Cheng,Li Chuang,Xu Yao-Hui,Hu Die,Hu Bo-Chun,Zang Jia,Wu Min-Chen
Abstract
Abstract
Background
Epoxide hydrolase can regioselectively catalyze the oxirane ring-opening hydrolysis of rac-epoxides producing the corresponding chiral diols. In our laboratory, a gene named pveh1 encoding an EH from Phaseolus vulgaris was cloned. Although the directed modification of PvEH1 was carried out, the mutant PvEH1Y3 showed a limited degree of enantioconvergence towards racemic (rac-) m-chlorostyrene oxide (mCSO).
Results
PvEH1 and PvEH1Y3 were combinatively subjected to laboratory evolution to further enhance the enantioconvergence of PvEH1Y3 towards rac-mCSO. Firstly, the substrate-binding pocket of PvEH1 was identified using a CAVER 3.0 software, and divided into three zones. After all residues in zones 1 and 3 were subjected to leucine scanning, two E. coli transformants, E. coli/pveh1Y149L and /pveh1P184L, were selected, by which rac-mCSO was transformed into (R)-m-chlorophenyl-1,2-ethanediol (mCPED) having 55.1% and 27.2% eep. Secondly, two saturation mutagenesis libraries, E. coli/pveh1Y149X and /pveh1P184X (X: any one of 20 residues) were created at sites Y149 and P184 of PvEH1. Among all transformants, both E. coli/pveh1Y149L (65.8% αS and 55.1% eep) and /pveh1P184W (66.6% αS and 59.8% eep) possessed the highest enantioconvergences. Finally, the combinatorial mutagenesis was conducted by replacements of both Y149L and P184W in PvEH1Y3, constructing E. coli/pveh1Y3Z2, whose αS reached 97.5%, higher than that (75.3%) of E. coli/pveh1Y3. In addition, the enantioconvergent hydrolysis of 20 mM rac-mCSO was performed by E. coli/pveh1Y3Z2, giving (R)-mCPED with 95.2% eep and 97.2% yield.
Conclusions
In summary, the enantioconvergence of PvEH1Y3Z2 was successfully improved by laboratory evolution, which was based on the study of substrate-binding pocket by leucine scanning. Our present work introduced an effective strategy for the directed modification of enantioconvergence of PvEH1.
Funder
National Natural Science Foundation of China
Postgraduate Research and Practice Innovation Program of Jiangsu Provence
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference27 articles.
1. Xu LN, Fang GY, Yu YH, Ma YF, Ye ZH, Li ZY. Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. Mol Catal. 2018;467:1–8.
2. Kamble MP, Yadav GD. Biocatalytic resolution of (R,S)-styrene oxide using a novel epoxide hydrolase from red mung beans. Catal Today. 2018;309:236–41.
3. Tan CL, Zhang X, Zhu ZJ, Xu MJ, Yang TW, Osire T, Yang ST, Rao ZM. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440. Microb Cell Fact. 2019;18:12.
4. Monterde MI, Lombard M, Archelas A, Cronin A, Arand M, Furstoss R. Enzymatic transformations. Part 58: enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron Asymmetry. 2004;15:2801–5.
5. Kotik M, Archelas A, Wohlgemuth R. Epoxide hydrolases and their application in organic synthesis. Curr Org Chem. 2012;16:451–82.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献