Abstract
AbstractProtein Glycan Coupling Technology (PGCT) uses purposely modified bacterial cells to produce recombinant glycoconjugate vaccines. This vaccine platform holds great potential in this context, namely due to its modular nature, the simplified production process in comparison to traditional chemical conjugation methods, and its amenability to scaled-up operations. As a result, a considerable reduction in production time and cost is expected, making PGCT-made vaccines a suitable vaccine technology for low-middle income countries, where vaccine coverage remains predominantly low and inconsistent. This work aims to develop an integrated whole-process automated platform for the screening of PGCT-made glycoconjugate vaccine candidates. The successful translation of a bench scale process for glycoconjugate production to a microscale automated setting was achieved. This was integrated with a numerical computational software that allowed hands-free operation and a platform adaptable to biological variation over the course of a production process. Platform robustness was proven with both technical and biological replicates and subsequently the platform was used to screen for the most favourable conditions for production of a pneumococcal serotype 4 vaccine candidate. This work establishes an effective automated platform that enabled the identification of the most suitable E. coli strain and genetic constructs to be used in ongoing early phase research and be further brought into preclinical trials.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference34 articles.
1. WHO. Immunization coverage. 2020.
2. Jin C, Gibani MM, Moore M, Juel HB, Jones E, Meiring J, et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet. 2017;390:2472–80.
3. Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins: II. Immunological specificity of synthetic sugar-protein antigens. J Exp Med. 1929;50:533–50.
4. Goebel WF, Avery OT. Chemo-immunological studies on conjugated carb ohydrate-proteins: I. The synthesis of p-aminophenol β-glucoside, p-aminophenol βgalactoside, and their coupling with serum globulin. J Exp Med. 1929;50:521–31.
5. Albert and Mary Lasker Foundation. 1996 Albert Lasker Clinical Medical Research Award: Vaccine for preventing meningitis in children. 1996. www.laskerfoundation.org/awards/show/vaccine-for-preventing-meningitis-in-children/. Accessed 12 Dec 2018.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献