Cannabidiol improves haloperidol-induced motor dysfunction in zebrafish: a comparative study with a dopamine activating drug

Author:

Hasumi Akihiro,Maeda HideyukiORCID

Abstract

Abstract Background Cannabidiol (CBD) extracted from the cannabis plant is believed to have a medicinal value due to its neuroprotective effect via anti-inflammatory and antioxidant action. Recent behavioral studies in rats have reported that CBD mediates serotonin (5-HT1A) receptor action to improve motor dysfunction induced by dopamine (D2) receptor blockade. In particular, its effect on D2 receptor blockade in the striatum is an important function associated with neurological disorders resulting from various extrapyramidal motor dysfunctions. Dopaminergic neurodegeneration associated with this site is known for inducing Parkinson’s disease (PD), which often affects the elderly. It is also known to cause drug-induced Parkinsonism. This study examines the ameliorating effect of CBD, which does not act directly on D2 receptors, against drug-induced motor dysfunction induced by the antipsychotic drug (haloperidol). Methods We created a drug-induced Parkinsonism model in zebrafish larvae using an antipsychotic drug (haloperidol). We evaluated the distance traveled and repetitive light-stimulation response. Furthermore, we examined whether administration of several concentrations of CBD ameliorates symptoms of the Parkinsonism model and compared its effects with those of antiparkinsonian drug ropinirole. Results CBD concentrations equal to half of haloperidol’s resulted in an almost complete reversal of haloperidol-induced motor dysfunction, as measured by the distance traveled by the zebrafish and their response to light-stimulus. While ropinirole also significantly reversed haloperidol’s effects at the same concentration as CBD, CBD was more effective than ropinirole. Conclusions CBD-induced motor dysfunction improvement via D2 receptor blockade is a potential novel mechanism for the treatment of haloperidol-induced motor dysfunction.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3