Abstract
Abstract
Cannabis has been integral to Eurasian civilization for millennia, but a century of prohibition has limited investigation. With spreading legalization, science is pivoting to study the pharmacopeia of the cannabinoids, and a thorough understanding of their biosynthesis is required to engineer strains with specific cannabinoid profiles. This review surveys the biosynthesis and biochemistry of cannabinoids. The pathways and the enzymes’ mechanisms of action are discussed as is the non-enzymatic decarboxylation of the cannabinoic acids. There are still many gaps in our knowledge about the biosynthesis of the cannabinoids, especially for the minor components, and this review highlights the tools and approaches that will be applied to generate an improved understanding and consequent access to these potentially biomedically-relevant materials.
Graphical abstract
Funder
Natural Sciences and Engineering Research Council of Canada
Arthritis Society
Mitacs
Publisher
Springer Science and Business Media LLC
Reference97 articles.
1. Adams R, Baker BR, Wearn RB. Structure of cannabinol. III. Synthesis of cannabinol, 1-hydroxy-3-n-amyl-6,6,9-trimethyl-6-dibenzopyran. J Am Chem Soc. 1940;62(8):2204–7.
2. Agurell S, Nilsson IM, Ohlsson A, Sandberg F. Metabolism of cannabis. III. Metabolism of tritium-labeled Δ 1-tetrahydrocannabinol in the rabbit. Biochem. Pharmacol. 1970;19(4):1333–9.
3. Appendino G, Chianese G, Taglialatela-Scafati O. Cannabinoids: Occurrence and medicinal chemistry. Curr Med Chem. 2011;18(7):1085–99.
4. Austin MB, Bowman ME, Ferrer J-L, Schröder J, Noel JP. An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol. 2004;11(9):1179–94.
5. Bohlmann J, Gershenzon J. Old substrates for new enzymes of terpenoid biosynthesis. Proc Natl Acad Sci U S A. 2009;106(26):10402–3.
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献