Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis

Author:

Ahmed Bulbul,Hijri MohamedORCID

Abstract

Abstract Background Cannabis growing practices and particularly indoor cultivation conditions have a great influence on the production of cannabinoids. Plant-associated microbes may affect nutrient acquisition by the plant. However, beneficial microbes influencing cannabinoid biosynthesis remain largely unexplored and unexploited in cannabis production. Objective To summarize study outcomes on bacterial and fungal communities associated with cannabis using high-throughput sequencing technologies and to uncover microbial interactions, species diversity, and microbial network connections that potentially influence secondary metabolite production in cannabis. Materials and method A mini review was conducted including recent publications on cannabis and their associated microbiota and secondary metabolite production. Results In this review, we provide an overview of the potential role of the soil microbiome in production of cannabinoids, and discussed that manipulation of cannabis-associated microbiome obtained through soil amendment interventions of diversified microbial communities sourced from natural forest soil could potentially help producers of cannabis to improve yields of cannabinoids and enhance the balance of cannabidiol (CBD) and tetrahydrocannabinol (THC) proportions. Conclusion Cannabis is one of the oldest cultivated crops in history, grown for food, fiber, and drugs for thousands of years. Extension of genetic variation in cannabis has developed into wide-ranging varieties with various complementary phenotypes and secondary metabolites. For medical or pharmaceutical purposes, the ratio of CBD to THC is key. Therefore, studying soil microbiota associated with cannabis and its potential impact on secondary metabolites production could be useful when selecting microorganisms as bioinoculant agents for enhanced organic cannabinoid production.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds Québécois de la Recherche sur la Nature et les Technologies

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3