Author:
Tong Lei,Wang Rongxia,Wang Dongsheng
Abstract
AbstractThe box girder of the Miaoziping Bridge, a three-span prestressed concrete continuous rigid-frame bridge, suffered a serious crack in its box section’s web near the 1/6 to 1/2 length of the side span and the middle-span length of 1/4 to 3/4, as a result of the 2008 Wenchuan earthquake, which also caused large lateral residual displacements at both ends of the side span. In this study, eight strong-motion records near the bridge site and two other records (El Centro and Taft) are selected as inputs for time-history analysis of the bridge. The cantilever construction process and initial stress of the box girder are considered in a bridge model for seismic numerical simulation. Further, the simulation results are compared with the actual earthquake damage. The cracking mechanism, influencing factors and control of the girder crack damage are discussed. The high-stress zones of the box girder agree with the seismic damage observed, even various seismic inputs are considered. The findings reveal that the maximum (principal) tensile stress of the girder exceeds the tensile strength of the concrete under the seismic excitations, and cracks occur. Under various input directions of ground motions, the proportion of the main girder stresses induced by the earthquake shows differences. After the failure of the shear keys in the transverse direction of the bridge, the stresses of the girder decrease in the mid-span. However, the beams at both ends of the side spans revealed large lateral displacements. Considering that the uplift of the beam ends, stress and axial torque of the girder’s side span are greatly reduced. Setting bi-directional friction pendulum bearings on the transition pier is an effective damping measure to control web cracking of the mid-span and lateral drifts of the beam ends.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. CCCCSHC (2013) China Communications Construction Company Second Highway Consultants Co.Ltd. Selection Guide for FPQZ series Friction pendulum bearings (in Chinese)
2. Chen F, Gu XY, Shan DS (2018) Seismic fragility analysis of irregular continuous rigid frame girder bridge. Cogent Eng 5(1):1–18
3. Chen LS, Zhuang WL, Zhao HQ (2012) Report on highways' damage in the Wenchuan earthquake-bridge. Beijing: China Communications Press (in Chinese).
4. Deng YL, Guo QK, Xu LQ (2019) Effects of pounding and fluid–structure interaction on seismic response of long-span deep-water bridge with high hollow piers. Arabian J Sci Eng 44(5):4453–4465
5. Ma (2008) Research on construction control of long span continuous rigid frame bridge. (MA.Eng Dissertation) Southwest Jiaotong University, P.R. China (in Chinese)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献