Abstract
AbstractCostal bridge systems usually contain tall piers with heights over 40 m, due to the engineering site exposed to deep water circumstances. Note that the conventional seismic isolation devices (e.g., isolation bearings) are not that effective for tall piers, since their dynamic performance is significantly affected by the distributed mass and vibration modes of columns; therefore, base isolation design philosophy could be a promising alternative for mitigating seismic demands of this type of bridges. This paper mainly investigates the efficiency of rocking foundations in improving seismic performance of tall pier bridges, with the results presented in the format of fragility curves. Finite element model of the prototype tall pier bridge is developed, and the responses subjected to near-fault motions are obtained using nonlinear time history analysis. Probability seismic demand models and fragility curves are then developed accordingly, based on which the performance of tall pier bridges are assessed. The results show that employment of rocking foundations could significantly reduce the demands of tall piers and the probability of being damaged. Before the initiation of uplifting at pier base, the behavior of rocking piers resembles that of conventional ones with integrated foundation. While rocking initiates under strong excitations, the demands of rocking piers reduce drastically compared with integrated ones and tend to be similar under different motions, which benefits the post-earthquake performance assessment of these bridges.
Funder
National Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献