Longitudinal damage of cable-stayed bridges subjected to near-fault ground motion pulses

Author:

Yi JiangORCID,Yu De’en

Abstract

AbstractThis paper investigated the nonlinear seismic performance of an existing cable-stayed bridge longitudinally subjected to a set of simulated near-fault ground motion pulses. An elaborated non-linear finite element model of the bridge was established which particularly considered cable sag effect, material nonlinearity of the tower and the deck. Through non-linear dynamic response analyses, seismic responses of the tower, deck and cables were evaluated at the yield and ultimate state of the structure. In particular, the yield and ultimate state of the structure were defined in the text based on damage levels of the structure and structural integrity requirement. It is revealed that the pulse period (Tp), by determining the relative contribution of multiple modes of the structure, strongly affected the damage process of the structure. As Tp was close to the period of first vertical vibration of the deck, the responses of the deck and cables were largely excited so that the deck might yield prior to yield of the tower, the cables failed prior to the ultimate state of the tower, and the deck suffered most of the damage despite of the yielding of the tower.

Funder

University Scientific Research Project of Guangzhou Education Bureau

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. California Department of Transportation. Caltrans seismic design criteria, 1.7[S], USA, 2013

2. Calvi GM, Sullivan TJ, Villani A (2010) Conceptual seismic design of cable-stayed bridges. J Earthq Eng 14(8):1139–1171

3. Camara A, Astiz MA (2012) Pushover analysis for the seismic response prediction of cable-stayed bridges under multi-directional excitation. Eng Struct 41(3):444–455

4. Chadwell CB, Fenves GL (2003) Near source earthquake effects on the ji lu cable-stayed bridge in the 21 September 1999 chi-chi taiwan earthquake. In: Roddis W (ed) Community workshop on computational simulation and visualization environment for NEES. National Science Foundation, Univ. of Kansas, Lawrence

5. Chadwell, C.B., Imbsen & Associates, (2002), “XTRACT - cross section analysis software for structural and earthquake engineering”. http://www.imbsen.com/xtract.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3