Abstract
AbstractAppropriate modeling of an experimental technology is necessary in order to estimate the aerodynamic characteristic of railway trains and infrastructure (e.g., bridges). Simulation of the earth’s wind characteristics of nature is a well-established practice by using an atmospheric boundary wind tunnel. However, in the mountainous area, the wind characteristics are strikingly different from those of the plain area, the amplitude variation of wind is related to complex terrain. Compared with atmospheric boundary layer winds, which are customarily treated as stationary, winds associated with gust winds originating from mountain areas exhibit rapid changes during a short period. A lack of available field test data and testing techniques has hindered such knowledge of the effect of mountain wind on railway-related applications. To simulate the characteristics of gust winds and prepare for follow-up studies of the impact on the railway-related structures, a gust wind generator was developed in an atmospheric boundary wind tunnel — the CSU wind tunnel. Further, the performance of the gust-wind generator was studied and analyzed under the condition of the combined operation between a gust-wind generator and a wind tunnel.
Funder
National Natural Science Foundation of China
Tencent
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Belu R, Koracin D (2013) Statistical and spectral analysis of wind characteristics relevant to wind energy assessment using tower measurements in complex terrain. N. p., Country Web
2. Butler K, Kareem A (2007) Physical and numerical modeling of downburst generated gust fronts. In: Proceedings of the 12th international conference on wind engineering, Cairns, Australia, pp 791–798
3. Cao S, Nishi A, Kikugawa H, Matsuda Y (2002) Reproduction of wind velocity history in a multiple fan wind tunnel. J Wind Eng Ind Aerodyn 90(12–15):1719–1729
4. Guo WW, Xia H, Karoumi R, Zhang T, Li X (2015) Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds. Wind Struct 20(2):213–236
5. Gurley K, Kareem A (1999) Applications of wavelet transforms in earthquake, wind and ocean engineering. Eng Struct 21:149–167
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献