Validation of the new graded prognostic assessment scale for brain metastases: a multicenter prospective study

Author:

Villà Salvador,Weber Damien C,Moretones Cristina,Mañes Anabel,Combescure Christophe,Jové Josep,Puyalto Paloma,Cuadras Patricia,Bruna Jordi,Verger Eugènia,Balañà Carme,Graus Francesc

Abstract

Abstract Background Prognostic indexes are useful to guide tailored treatment strategies for cancer patients with brain metastasis (BM). We evaluated the new Graded Prognostic Assessment (GPA) scale in a prospective validation study to compare it with two published prognostic indexes. Methods A total of 285 newly diagnosed BM (n = 85 with synchronous BM) patients, accrued prospectively between 2000 and 2009, were included in this analysis. Mean age was 62 ± 12.0 years. The median KPS and number of BM was 70 (range, 20-100) and 3 (range, 1-50), respectively. The majority of primary tumours were lung (53%), or breast (17%) cancers. Treatment was administered to 255 (89.5%) patients. Only a minority of patients could be classified prospectively in a favourable prognostic class: GPA 3.5-4: 3.9%; recursive partitioning analysis (RPA) 1, 8.4% and Basic Score for BM (BSBM) 3, 9.1%. Mean follow-up (FU) time was 5.2 ± 4.7 months. Results During the period of FU, 225 (78.9%) patients died. The 6 months- and 1 year-OS was 36.9% and 17.6%, respectively. On multivariate analysis, performance status (P < 0.001), BSBM (P < 0.001), Center (P = 0.007), RPA (P = 0.02) and GPA (P = 0.03) were statistically significant for OS. The survival prediction performances' of all indexes were identical. Noteworthy, the significant OS difference observed within 3 months of diagnosis between the BSBM, RPA and GPA classes/groups was not observed after this cut-off time point. Harrell's concordance indexes C were 0.58, 0.61 and 0.58 for the GPA, BSBM and RPA, respectively. Conclusions Our data suggest that the new GPA index is a valid prognostic index. In this prospective study, the prediction performance was as good as the BSBM or RPA systems. These published indexes may however have limited long term prognostication capability.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3