Author:
Rembert James L,Heitz Roxana,Hoffman Adam
Abstract
Abstract
Background
Tissue expanders are used in breast reconstruction after mastectomy to stretch the remaining tissue to create space for placement of permanent breast implants. The AeroForm™ Tissue Expander, developed by AirXpanders™ Inc., contains electronic components designed to activate the release of carbon dioxide from an internal reservoir to inflate the expander. Breast cancer patients who undergo mastectomy and tissue expander/implant-based breast reconstruction may require radiation therapy at doses up to 50–60 Gy while the expander is in place. The ionizing radiation used in postmastectomy radiation therapy interacts with electronic components in medical implants, which may cause degradation in performance above certain levels. Most commercial electronic components used in medical devices, such as complementary metal-oxide semiconductor or bipolar integrated circuits can withstand radiation levels in the 50 Gy range without any performance degradation. Beyond this level, the performance may still be sufficient to guarantee functionality, but this needs to be confirmed at the system and electronic circuit level. We assessed the impact of radiation levels up to 75 Gy on 32 AeroForm™ Tissue Expanders (AirXpanders, Inc., Palo Alto, CA USA) and on the associated internal printed circuit assemblies.
Findings
The electronics inside the AeroForm™ Tissue Expander implant continued to function properly after exposure to radiation levels up to 75 Gy, which is well above the maximum total dose level typically used in postmastectomy radiation therapy.
Conclusions
Standard postmastectomy radiation therapy doses do not damage or affect the functionality of the AeroForm™ Tissue Expander.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献