Author:
Riesterer Oliver,Oehler-Jänne Christoph,Jochum Wolfram,Broggini-Tenzer Angela,Vuong Van,Pruschy Martin
Abstract
Abstract
Background
The combined treatment modality of ionizing radiation (IR) with inhibitors of angiogenesis (IoA) is a promising treatment modality based on preclinical in vivo studies using heterotopic xeno- and allograft tumor models. Nevertheless reservations still exist to translate this combined treatment modality into clinical trials, and more advanced, spontaneous orthotopic tumor models are required for validation to study the efficacy and safety of this treatment modality.
Findings
We therefore investigated the combined treatment modality of IR in combination with the clinically relevant VEGF receptor (VEGFR) tyrosine kinase inhibitor PTK787 in the MMTV/c-neu induced mammary carcinoma model and a syngenic allograft tumor model using athymic nude mice. Mice were treated with fractionated IR, the VEGFR-inhibitor PTK787/ZK222584 (PTK787), or in combination, and efficacy and mechanistic-related endpoints were probed in both tumor models. Overall the treatment response to the IoA was comparable in both tumor models, demonstrating minimal tumor growth delay in response to PTK787 and PTK787-induced tumor hypoxia. Interestingly spontaneously growing tumors were more radiosensitive than the allograft tumors. More important combined treatment of irradiation with PTK787 resulted in a supraadditive tumor response in both tumor models with a comparable enhancement factor, namely 1.5 and 1.4 in the allograft and in the spontaneous tumor model, respectively.
Conclusions
These results demonstrate that IR in combination with VEGF-receptor tyrosine kinase inhibitors is a valid, promising treatment modality, and that the treatment responses in spontaneous mammary carcinomas and syngenic allografts tumor models are comparable.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Reference12 articles.
1. Dudek AZ, Zwolak P, Jasinski P, Terai K, Gallus NJ, Ericson ME, Farassati F: Protein kinase C-beta inhibitor enzastaurin (LY317615.HCI) enhances radiation control of murine breast cancer in an orthotopic model of bone metastasis. Invest New Drugs 2008, 26: 13-24. 10.1007/s10637-007-9079-y
2. Maggiorella L, Aubel C, Haton C, Milliat F, Connault E, Opolon P, Deutsch E, Bourhis J: Cooperative effect of roscovitine and irradiation targets angiogenesis and induces vascular destabilization in human breast carcinoma. Cell Prolif 2009, 42: 38-48. 10.1111/j.1365-2184.2008.00570.x
3. Riesterer O, Honer M, Jochum W, Oehler C, Ametamey S, Pruschy M: Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clin Cancer Res 2006, 12: 3518-3524. 10.1158/1078-0432.CCR-05-2816
4. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, et al.: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004, 6: 553-563.
5. Fenton BM, Paoni SF: The addition of AG-013736 to fractionated radiation improves tumor response without functionally normalizing the tumor vasculature. Cancer Res 2007, 67: 9921-9928. 10.1158/0008-5472.CAN-07-1066
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献