Human umbilical cord mesenchymal stem cells combined with pirfenidone upregulates the expression of RGS2 in the pulmonary fibrosis in mice

Author:

Wu Xian,Gou Hao,Zhou Ou,Qiu Huijun,Liu Hanmin,Fu Zhou,Chen Lina

Abstract

Abstract Objective The therapeutic effect of umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in combination with pirfenidone (PFD) on pulmonary fibrosis in mice and its possible mechanism were investigated. Methods C57BL/6 mice were randomly divided into six groups: control group, model group, P10 group, P30 group, P100 group, and P300 group. Modeled by tracheal intubation with 3 mg/kg bleomycin drip, each dose of PFD was administered daily by gavage from day 7 onwards. The mice were observed continuously for 21 days and survival was recorded. Lung tissues were collected on day 21, and hematoxylin–eosin (HE) and Masson staining were performed to assess morphological changes and collagen deposition in the lungs. Collagen content was measured by the Sircol method, and fibrosis marker levels were detected by PCR and Western blot. Another batch of C57BL/6 mice was then randomly divided into five groups: hUC-MSC control group, model group, P100 group, hUC-MSC treatment group, and hUC-MSCs + P30 group. On day 7, 5 × 105 hUC-MSCs were injected into the tail vein, the mice were administered PFD gavage daily from day 7 onwards, and their survival was recorded. Lung tissues were collected on day 21 to detect pathological changes, the collagen content, and the expression of regulator of G protein signaling 2 (RGS2). Pulmonary myofibroblasts (MFBs) were divided into an MFB group and an MFB + hUC-MSCs group; different doses of PFD were administered to each group, and the levels of RGS2, intracellular Ca2+, and fibrosis markers were recorded for each group. Results Compared with other PFD group doses, the P100 group had significantly improved mouse survival and lung pathology and significantly reduced collagen and fibrosis marker levels (p < 0.05). The hUC-MSCs + P30 group had significantly improved mouse survival and lung pathology, significantly reduced collagen content and fibrosis marker levels (p < 0.05), and the efficacy was better than that of the P100 and hUC-MSCs groups (p < 0.05). RGS2 expression was significantly higher in the MSCs + P30 group compared with the P100 and hUC-MSCs groups (p < 0.05). PFD increased RGS2 expression in MFBs (p < 0.05) in a dose-dependent manner. Compared with PFD and hUC-MSCs treatment alone, combination of hUC-MSCs and PFD increased RGS2 protein levels, significantly decreased intracellular Ca2+ concentration, and significantly reduced fibrosis markers. Conclusion The findings suggest that hUC-MSCs combined with low-dose PFD have a therapeutic effect better than that of the two treatments used separately. Its effect on attenuating bleomycin-induced pulmonary fibrosis in mice is related to the increase of RGS2.

Funder

National Natural Science Foundation of China

Key project from Chinese Ministry of Science and Technology

Science & Technology department of Sichuan Province

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3