Author:
Lopez-Campos José Luis,Osaba Lourdes,Czischke Karen,Jardim José R.,Fernandez Acquier Mariano,Ali Abraham,Günen Hakan,Rapun Noelia,Drobnic Estrella,Miravitlles Marc
Abstract
Abstract
Introduction
Currently, strategies for improving alpha1 antitrypsin deficiency (AATD) diagnosis are needed. Here we report the performance of a multinational multiplex-based genotyping test on dried blood spots and buccal swabs sent by post or courier and with web registration for subjects with suspected AATD in Argentina, Brazil, Chile, Colombia, Spain, and Turkey.
Methods
This was an observational, cross-sectional analysis of samples from patients with suspected AATD from March 2018 to January 2022. Samples were coded on a web platform and sent by post or courier to the central laboratory in Northern Spain. Allele-specific genotyping for the 14 most common mutations was carried out with the A1AT Genotyping Test (Progenika-Grifols, Spain). SERPINA1 gene sequencing was performed if none of the mutations were found or one variant was detected in heterozygous status and the AAT serum level was < 60 mg/dl, or if requested by the clinician in charge.
Results
The study included 30,827 samples: 30,458 (94.7%) with final results after direct genotyping and 369 (1.1%) with additional gene sequencing. Only 0.3% of the samples were not processed due to their poor quality. The prevalence of the most frequent allele combinations was MS 14.7%, MZ 8.6%, SS 1.9%, SZ 1.9%, and ZZ 0.9%. Additionally, 70 cases with new mutations were identified. Family screening was conducted in 2.5% of the samples. Samples from patients with respiratory diseases other than COPD, including poorly controlled asthma or bronchiectasis, also presented AATD mutations.
Conclusions
Our results confirm the viability of this diagnostic system for genotyping AATD conducted simultaneously in different countries. The system has proved satisfactory and can improve the timely diagnosis of AATD.
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Nakanishi T, Forgetta V, Handa T, Hirai T, Mooser V, Lathrop GM, Cookson W, Richards JB. The undiagnosed disease burden associated with alpha-1 antitrypsin deficiency genotypes. Eur Respir J. 2020;56(6):2001441.
2. Gupta N, Gaudreault N, Theriault S, Li PZ, Henry C, Kirby M, Maltais F, Tan W, Bourbeau J, Bosse Y, et al. Granularity of SERPINA1 alleles by DNA sequencing in CanCOLD. Eur Respir J. 2020;56(4):2000958.
3. Gurevich S, Daya A, Da Silva C, Girard C, Rahaghi F. Improving screening for alpha-1 antitrypsin deficiency with direct testing in the pulmonary function testing laboratory. Chronic Obstr Pulm Dis (Miami, Fla). 2021;8(2):190–7.
4. Menga G, Fernandez Acquier M, Echazarreta AL, Sorroche PB, Lorenzon MV, Fernandez ME, Saez MS, grupo de estudio DA. Prevalence of alpha-1 antitrypsin deficiency in COPD patients in Argentina. The DAAT.AR Study. Arch Bronconeumol. 2020;56(9):571–7.
5. Lopez-Campos JL, Casas-Maldonado F, Torres-Duran M, Medina-Gonzalvez A, Rodriguez-Fidalgo ML, Carrascosa I, Calle M, Osaba L, Rapun N, Drobnic E, et al. Results of a diagnostic procedure based on multiplex technology on dried blood spots and buccal swabs for subjects with suspected alpha1 antitrypsin deficiency. Arch Bronconeumol (Engl Ed). 2021;57(1):42–50.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献