Effects of increasing tidal volume and end-expiratory lung volume on induced bronchoconstriction in healthy humans

Author:

Gobbi Alessandro,Antonelli Andrea,Dellaca Raffaele,Pellegrino Giulia M.,Pellegrino Riccardo,Fredberg Jeffrey J.,Solway Julian,Brusasco Vito

Abstract

Abstract Background Increasing functional residual capacity (FRC) or tidal volume (VT) reduces airway resistance and attenuates the response to bronchoconstrictor stimuli in animals and humans. What is unknown is which one of the above mechanisms is more effective in modulating airway caliber and whether their combination yields additive or synergistic effects. To address this question, we investigated the effects of increased FRC and increased VT in attenuating the bronchoconstriction induced by inhaled methacholine (MCh) in healthy humans. Methods Nineteen healthy volunteers were challenged with a single-dose of MCh and forced oscillation was used to measure inspiratory resistance at 5 and 19 Hz (R5 and R19), their difference (R5-19), and reactance at 5 Hz (X5) during spontaneous breathing and during imposed breathing patterns with increased FRC, or VT, or both. Importantly, in our experimental design we held the product of VT and breathing frequency (BF), i.e, minute ventilation (VE) fixed so as to better isolate the effects of changes in VT alone. Results Tripling VT from baseline FRC significantly attenuated the effects of MCh on R5, R19, R5-19 and X5. Doubling VT while halving BF had insignificant effects. Increasing FRC by either one or two VT significantly attenuated the effects of MCh on R5, R19, R5-19 and X5. Increasing both VT and FRC had additive effects on R5, R19, R5-19 and X5, but the effect of increasing FRC was more consistent than increasing VT thus suggesting larger bronchodilation. When compared at iso-volume, there were no differences among breathing patterns with the exception of when VT was three times larger than during spontaneous breathing. Conclusions These data show that increasing FRC and VT can attenuate induced bronchoconstriction in healthy humans by additive effects that are mainly related to an increase of mean operational lung volume. We suggest that static stretching as with increasing FRC is more effective than tidal stretching at constant VE, possibly through a combination of effects on airway geometry and airway smooth muscle dynamics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3