Development of a nomogram based on the clinicopathological and CT features to predict the survival of primary pulmonary lymphoepithelial carcinoma patients

Author:

Nie Kai,Zhu Lin,Zhang Yuxuan,Chen Yinan,Parrington John,Yu Hong

Abstract

Abstract Background The aim of this study was to develop a nomogram by combining chest computed tomography (CT) images and clinicopathological predictors to assess the survival outcomes of patients with primary pulmonary lymphoepithelial carcinoma (PLEC). Methods 113 patients with stage I–IV primary PLEC who underwent treatment were retrospectively reviewed. The Cox regression analysis was performed to determine the independent prognostic factors associated with patient’s disease-free survival (DFS) and cancer-specific survival (CSS). Based on results from multivariate Cox regression analysis, the nomograms were constructed with pre-treatment CT features and clinicopathological information, which were then assessed with respect to calibration, discrimination and clinical usefulness. Results Multivariate Cox regression analysis revealed the independent prognostic factors for DFS were surgery resection and hilar and/or mediastinal lymphadenopathy, and that for CSS were age, smoking status, surgery resection, tumor site in lobe and necrosis. The concordance index (C‑index) of nomogram for DFS and CSS were 0.777 (95% CI: 0.703–0.851) and 0.904 (95% CI: 0.847–0.961), respectively. The results of the time‑dependent C‑index were internally validated using a bootstrap resampling method for DFS and CSS also showed that the nomograms had a better discriminative ability. Conclusions We developed nomograms based on clinicopathological and CT factors showing a good performance in predicting individual DFS and CSS probability among primary PLEC patients. This prognostic tool may be valuable for clinicians to more accurately drive treatment decisions and individualized survival assessment.

Funder

Shanghai Pujiang Program

Shanghai Health Research Foundation for Talents

National Natural Science Foundation of China

Shanghai Municipal Commission of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3