Author:
Wang Wen-Wen,Mao Bei,Liu Yang,Gu Shu-Yi,Lu Hai-Wen,Bai Jiu-Wu,Liang Shuo,Yang Jia-Wei,Li Jian-Xiong,Su Xiao,Hu Hai-Yang,Wang Chen,Xu Jin-Fu
Abstract
Abstract
Background
Emerging experimental and epidemiological evidence highlights a crucial cross-talk between the intestinal flora and the lungs, termed the “gut-lung axis”. However, the function of the gut microbiota in bronchiectasis remains undefined. In this study, we aimed to perform a multi-omics-based approach to identify the gut microbiome and metabolic profiles in patients with bronchiectasis.
Methods
Fecal samples collected from non-CF bronchiectasis patients (BE group, n = 61) and healthy volunteers (HC group, n = 37) were analyzed by 16 S ribosomal RNA (rRNA) sequencing. The BE group was divided into two groups based on their clinical status: acute exacerbation (AE group, n = 31) and stable phase (SP group, n = 30). Further, metabolome (lipid chromatography-mass spectrometry, LC-MS) analyses were conducted in randomly selected patients (n = 29) and healthy volunteers (n = 31).
Results
Decreased fecal microbial diversity and differential microbial and metabolic compositions were observed in bronchiectasis patients. Correlation analyses indicated associations between the differential genera and clinical parameters such as bronchiectasis severity index (BSI). Disease-associated gut microbiota was screened out, with eight genera exhibited high accuracy in distinguishing SP patients from HCs in the discovery cohort and validation cohort using a random forest model. Further correlation networks were applied to illustrate the relations connecting disease-associated genera and metabolites.
Conclusion
The study uncovered the relationships among the decreased fecal microbial diversity, differential microbial and metabolic compositions in bronchiectasis patients by performing a multi-omics-based approach. It is the first study to characterize the gut microbiome and metabolome in bronchiectasis, and to uncover the gut microbiota’s potentiality as biomarkers for bronchiectasis.
Trial registration: This study is registered with ClinicalTrials.gov, number NCT04490447.
Funder
National Natural Science Fund for Distinguished Young Scholar
Shanghai Leading Talent Program
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Martinez-Garcia MA, Polverino E, Aksamit T. Bronchiectasis and chronic airway disease: it is not just about asthma and COPD. Chest. 2018;154(4):737–9.
2. McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2013;188(6):647–56.
3. Swenson C, Schraufnagel D, Sadikot R. What is bronchiectasis? Am J Respir Crit Care Med. 2017;195(8):P15-P6.
4. Diel R, Chalmers JD, Rabe KF, Nienhaus A, Loddenkemper R, Ringshausen FC. Economic burden of bronchiectasis in Germany. Eur Respir J. 2019;53(2).
5. Lin JL, Xu JF, Qu JM. Bronchiectasis in China. Ann Am Thorac Soc. 2016;13(5):609–16.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献