A polo-like kinase inhibitor identified by computational repositioning attenuates pulmonary fibrosis

Author:

Imakura Takeshi,Sato Seidai,Koyama Kazuya,Ogawa Hirohisa,Niimura Takahiro,Murakami Kojin,Yamashita Yuya,Haji Keiko,Naito Nobuhito,Kagawa Kozo,Kawano Hiroshi,Zamami Yoshito,Ishizawa Keisuke,Nishioka Yasuhiko

Abstract

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with few effective therapeutic options. Recently, drug repositioning, which involves identifying novel therapeutic potentials for existing drugs, has been popularized as a new approach for the development of novel therapeutic reagents. However, this approach has not yet been fully utilized in the field of pulmonary fibrosis. Methods The present study identified novel therapeutic options for pulmonary fibrosis using a systematic computational approach for drug repositioning based on integration of public gene expression signatures of drug and diseases (in silico screening approach). Results Among the top compounds predicted to be therapeutic for IPF by the in silico approach, we selected BI2536, a polo-like kinase (PLK) 1/2 inhibitor, as a candidate for treating pulmonary fibrosis using an in silico analysis. However, BI2536 accelerated mortality and weight loss rate in an experimental mouse model of pulmonary fibrosis. Because immunofluorescence staining revealed that PLK1 expression was dominant in myofibroblasts while PLK2 expression was dominant in lung epithelial cells, we next focused on the anti-fibrotic effect of the selective PLK1 inhibitor GSK461364. Consequently, GSK461364 attenuated pulmonary fibrosis with acceptable mortality and weight loss in mice. Conclusions These findings suggest that targeting PLK1 may be a novel therapeutic approach for pulmonary fibrosis by inhibiting lung fibroblast proliferation without affecting lung epithelial cells. In addition, while in silico screening is useful, it is essential to fully determine the biological activities of candidates by wet-lab validation studies.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3