Abstract
Abstract
Background
The mannitol test is an indirect bronchial challenge test widely used in diagnosing asthma. Response to the mannitol test correlates with the level of eosinophilic and mast cell airway inflammation, and a positive mannitol test is highly predictive of a response to anti-inflammatory treatment with inhaled corticosteroids. The response to mannitol is a physiological biomarker that may, therefore, be used to assess the response to other anti-inflammatory treatments and may be of particular interest in early phase studies that require surrogate markers to predict a clinical response. The main objectives of this review were to assess the practical aspects of using mannitol as an endpoint in clinical trials and provide the clinical researcher and respiratory physician with recommendations when designing early clinical trials.
Methods
The aim of this review was to summarise previous uses of the mannitol test as an outcome measure in clinical intervention studies. The PubMed database was searched using a combination of MeSH and keywords. Eligible studies included intervention or repeatability studies using the standard mannitol test, at multiple timepoints, reporting the use of PD15 as a measure, and published in English.
Results
Of the 193 papers identified, 12 studies met the inclusion criteria and data from these are discussed in detail. Data on the mode of action, correlation with airway inflammation, its diagnostic properties, and repeatability have been summarised, and suggestions for the reporting of test results provided. Worked examples of power calculations for dimensioning study populations are presented for different types of study designs. Finally, interpretation and reporting of the change in the response to the mannitol test are discussed.
Conclusions
The mechanistic and practical features of the mannitol test make it a useful marker of disease, not only in clinical diagnoses, but also as an outcome measure in intervention trials. Measuring airway hyperresponsiveness to mannitol provides a novel and reproducible test for assessing efficacy in intervention trials, and importantly, utilises a test that links directly to underlying drivers of disease.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Agustí A, Bafadhel M, Beasley R, Bel EH, Faner R, Gibson PG, et al. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J. 2017;50(4):1701655.
2. Pavord ID, Holliday M, Reddel HK, Braithwaite I, Ebmeier S, Hancox RJ, et al. Predictive value of blood eosinophils and exhaled nitric oxide in adults with mild asthma: a prespecified subgroup analysis of an open-label, parallel-group, randomised controlled trial. Lancet Respir Med. 2020;8(7):671–80.
3. Backer V, Sverrild A, Ulrik CS, Bødtger U, Seersholm N, Porsbjerg C. Diagnostic work-up in patients with possible asthma referred to a university hospital. Eur Clin Respir J. 2015;2:1.
4. European Medicines Agency. Guideline on the clinical investigation of medicinal products for the treatment of asthma (CHMP/EWP/2922/01 Rev. 1). https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-investigation-medicinal-products-treatment-asthma_en.pdf (2015). Accessed 25 March 2021.
5. Prosperini G, Rajakulasingam K, Cacciola RR, Spicuzza L, Rorke S, Holgate ST, et al. Changes in sputum counts and airway hyperresponsiveness after budesonide: monitoring anti-inflammatory response on the basis of surrogate markers of airway inflammation. J Allergy Clin Immunol. 2002;110(6):855–61.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献